yes, this is what i want !

BUT i cant compute the eigenvectors symbolically within SAGE.
So for example

A.eigenvectors()

gives the error:
AttributeError: 'sage.matrix.matrix_symbolic_dense.Matrix_symbolic_'
object has no attribute 'eigenvectors'

how can i now compute those eigenvectors within SAGE or with the
MAXIMA interface ?
Thank you very much !

___________________________________________________
On Mar 9, 6:48 pm, Robert Bradshaw <rober...@math.washington.edu>
wrote:
> On Mar 9, 2009, at 4:44 AM, David Joyner wrote:
>
>
>
> > On Sun, Mar 8, 2009 at 1:43 PM, alex
> > <alessandro.bernardini.1...@gmail.com> wrote:
>
> >> How can i compute the matrix multiplication (product) of two symbolic
> >> matrices in sage ?
>
> >> I have tried:
> >> A = maxima("matrix ([a, b], [c, d])")
> >> AI= A.invert()
>
> >> and
> >> A * AI
> >> gives
> >> matrix([a*d/(a*d-b*c),-b^2/(a*d-b*c)],[-c^2/(a*d-b*c),a*d/(a*d-b*c)])
>
> > Do you want the following?
>
> > sage: a,b,c,d = var("a,b,c,d")
> > sage: A = matrix ([[a, b], [c, d]])
> > sage: AI = A.inverse()
> > sage: P = A*AI; P
>
> > [a*d/(a*d - b*c) - b*c/(a*d - b*c)                                 0]
> > [                                0 a*d/(a*d - b*c) - b*c/(a*d - b*c)]
>
> sage: P.simplify_rational()
>
> [1 0]
> [0 1]
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to