yes, this is what i want ! BUT i cant compute the eigenvectors symbolically within SAGE. So for example
A.eigenvectors() gives the error: AttributeError: 'sage.matrix.matrix_symbolic_dense.Matrix_symbolic_' object has no attribute 'eigenvectors' how can i now compute those eigenvectors within SAGE or with the MAXIMA interface ? Thank you very much ! ___________________________________________________ On Mar 9, 6:48 pm, Robert Bradshaw <rober...@math.washington.edu> wrote: > On Mar 9, 2009, at 4:44 AM, David Joyner wrote: > > > > > On Sun, Mar 8, 2009 at 1:43 PM, alex > > <alessandro.bernardini.1...@gmail.com> wrote: > > >> How can i compute the matrix multiplication (product) of two symbolic > >> matrices in sage ? > > >> I have tried: > >> A = maxima("matrix ([a, b], [c, d])") > >> AI= A.invert() > > >> and > >> A * AI > >> gives > >> matrix([a*d/(a*d-b*c),-b^2/(a*d-b*c)],[-c^2/(a*d-b*c),a*d/(a*d-b*c)]) > > > Do you want the following? > > > sage: a,b,c,d = var("a,b,c,d") > > sage: A = matrix ([[a, b], [c, d]]) > > sage: AI = A.inverse() > > sage: P = A*AI; P > > > [a*d/(a*d - b*c) - b*c/(a*d - b*c) 0] > > [ 0 a*d/(a*d - b*c) - b*c/(a*d - b*c)] > > sage: P.simplify_rational() > > [1 0] > [0 1] --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---