On Sun, Mar 8, 2009 at 1:43 PM, alex <alessandro.bernardini.1...@gmail.com> wrote: > > How can i compute the matrix multiplication (product) of two symbolic > matrices in sage ? > > I have tried: > A = maxima("matrix ([a, b], [c, d])") > AI= A.invert() > > and > A * AI > gives > matrix([a*d/(a*d-b*c),-b^2/(a*d-b*c)],[-c^2/(a*d-b*c),a*d/(a*d-b*c)])
Do you want the following? sage: a,b,c,d = var("a,b,c,d") sage: A = matrix ([[a, b], [c, d]]) sage: AI = A.inverse() sage: P = A*AI; P [a*d/(a*d - b*c) - b*c/(a*d - b*c) 0] [ 0 a*d/(a*d - b*c) - b*c/(a*d - b*c)] > > so * is not the matrix product. > > I did not founf informations in any documentation !! > > So: How can i compute the matrix multiplication (product) of two > symbolic matrices in sage ? > > THX ! > > > > --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support-unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---