Hi folks, I run into some coercion trouble when I reduce a fourier coefficient of a cusp form modulo a prime ideal. (See below.)
Any idea how I can avoid this? Regards, Ifti === sage: M = ModularSymbols(77, 2) sage: s = M.cuspidal_subspace().new_subspace() sage: N = s.decomposition() sage: f = N[3].q_eigenform() sage: R = f.base_ring() sage: K = R.number_field() sage: O = K.ring_of_integers() sage: I = O.ideal(7) sage: F = O.residue_field(I) sage: F(f[2]) --------------------------------------------------------------------------- <type 'exceptions.TypeError'> Traceback (most recent call last) /home/burhanud/tau_nov14_07/<ipython console> in <module>() /home/burhanud/tau_nov14_07/residue_field.pyx in sage.rings.residue_field.ResidueFiniteField_givaro.__call__() /home/burhanud/tau_nov14_07/finite_field_givaro.pyx in sage.rings.finite_field_givaro.FiniteField_givaro.__call__() <type 'exceptions.TypeError'>: unable to coerce --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/ -~----------~----~----~----~------~----~------~--~---