Hi folks,

I run into some coercion trouble when I reduce a fourier coefficient
of a cusp form modulo a prime ideal. (See below.)

Any idea how I can avoid this?

Regards,
Ifti
===

sage: M = ModularSymbols(77, 2)

sage: s = M.cuspidal_subspace().new_subspace()

sage: N = s.decomposition()

sage: f = N[3].q_eigenform()

sage: R = f.base_ring()

sage: K = R.number_field()

sage: O = K.ring_of_integers()

sage: I = O.ideal(7)

sage: F = O.residue_field(I)

sage: F(f[2])
---------------------------------------------------------------------------
<type 'exceptions.TypeError'>             Traceback (most recent call
last)

/home/burhanud/tau_nov14_07/<ipython console> in <module>()

/home/burhanud/tau_nov14_07/residue_field.pyx in
sage.rings.residue_field.ResidueFiniteField_givaro.__call__()

/home/burhanud/tau_nov14_07/finite_field_givaro.pyx in
sage.rings.finite_field_givaro.FiniteField_givaro.__call__()

<type 'exceptions.TypeError'>: unable to coerce


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to