On Thu, 15 Nov 2007, mabshoff wrote: > On Nov 16, 1:30 am, Iftikhar Burhanuddin <[EMAIL PROTECTED]> wrote: > > I run into some coercion trouble when I reduce a fourier coefficient > > of a cusp form modulo a prime ideal. (See below.) > > No clue for now, but that looks like a bug to me. Please file a bug > report.
Hi Michael et al, This is ticket #1185. I wonder why the base ring of the form is {{{ sage: R Univariate Quotient Polynomial Ring in alpha over Rational Field with modulus x^2 - 5 }}} and not {{{ sage: O Maximal Order in Number Field in alpha with defining polynomial x^2 - 5 }}} or perhaps {{{ sage: K Number Field in alpha with defining polynomial x^2 - 5 }}} Was it a design decision? One way to not run into the coercion trouble would be for the base ring of the form to return the corresponding the number field. Regards, Ifti > sage: M = ModularSymbols(77, 2) > > sage: s = M.cuspidal_subspace().new_subspace() > > sage: N = s.decomposition() > > sage: f = N[3].q_eigenform() > > sage: R = f.base_ring() > > sage: K = R.number_field() > > sage: O = K.ring_of_integers() > > sage: I = O.ideal(7) > > sage: F = O.residue_field(I) > > sage: F(f[2]) > --------------------------------------------------------------------------- > <type 'exceptions.TypeError'> Traceback (most recent call > last) > > /home/burhanud/tau_nov14_07/<ipython console> in <module>() > > /home/burhanud/tau_nov14_07/residue_field.pyx in > sage.rings.residue_field.ResidueFiniteField_givaro.__call__() > > /home/burhanud/tau_nov14_07/finite_field_givaro.pyx in > sage.rings.finite_field_givaro.FiniteField_givaro.__call__() > > <type 'exceptions.TypeError'>: unable to coerce --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-devel@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-devel URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/ -~----------~----~----~----~------~----~------~--~---