On Thu, 15 Nov 2007, mabshoff wrote:
> On Nov 16, 1:30 am, Iftikhar Burhanuddin <[EMAIL PROTECTED]> wrote:
> > I run into some coercion trouble when I reduce a fourier coefficient
> > of a cusp form modulo a prime ideal. (See below.)
>
> No clue for now, but that looks like a bug to me. Please file a bug
> report.

Hi Michael et al,

This is ticket #1185.

I wonder why the base ring of the form is

{{{
sage: R
 Univariate Quotient Polynomial Ring in alpha over Rational Field with
modulus x^2 - 5
}}}

and not

{{{
sage: O
 Maximal Order in Number Field in alpha with defining polynomial x^2 - 5
}}}

or perhaps

{{{
sage: K
 Number Field in alpha with defining polynomial x^2 - 5
}}}

Was it a design decision?

One way to not run into the coercion trouble would be for the base ring of
the form to return the corresponding the number field.

Regards,
Ifti

> sage: M = ModularSymbols(77, 2)
>
> sage: s = M.cuspidal_subspace().new_subspace()
>
> sage: N = s.decomposition()
>
> sage: f = N[3].q_eigenform()
>
> sage: R = f.base_ring()
>
> sage: K = R.number_field()
>
> sage: O = K.ring_of_integers()
>
> sage: I = O.ideal(7)
>
> sage: F = O.residue_field(I)
>
> sage: F(f[2])
>
---------------------------------------------------------------------------
> <type 'exceptions.TypeError'>             Traceback (most recent call
> last)
>
> /home/burhanud/tau_nov14_07/<ipython console> in <module>()
>
> /home/burhanud/tau_nov14_07/residue_field.pyx in
> sage.rings.residue_field.ResidueFiniteField_givaro.__call__()
>
> /home/burhanud/tau_nov14_07/finite_field_givaro.pyx in
> sage.rings.finite_field_givaro.FiniteField_givaro.__call__()
>
> <type 'exceptions.TypeError'>: unable to coerce




--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to