The code for residue field is currently not correct.  In converting a number
field element, it expresses it in terms of a power basis for the number
field and then casts the coefficients to Z/pZ.  But the coefficients can
have denominators divisible by p in general.  That's probably what's causing
your problem.

William and I have been talking about rewriting it so that residue field
computes a p-maximal order and then does things appropriately, but it hasn't
gotten done yet.
David

On Nov 15, 2007 8:57 PM, mabshoff <
[EMAIL PROTECTED]> wrote:

>
>
>
> On Nov 16, 1:30 am, Iftikhar Burhanuddin <[EMAIL PROTECTED]> wrote:
> > Hi folks,
>
> Hello Ifti,
>
> >
> > I run into some coercion trouble when I reduce a fourier coefficient
> > of a cusp form modulo a prime ideal. (See below.)
> >
> > Any idea how I can avoid this?
> >
>
> No clue for now, but that looks like a bug to me. Please file a bug
> report.
>
> Cheers,
>
> Michael
>
> > Regards,
> > Ifti
> > ===
> >
> > sage: M = ModularSymbols(77, 2)
> >
> > sage: s = M.cuspidal_subspace().new_subspace()
> >
> > sage: N = s.decomposition()
> >
> > sage: f = N[3].q_eigenform()
> >
> > sage: R = f.base_ring()
> >
> > sage: K = R.number_field()
> >
> > sage: O = K.ring_of_integers()
> >
> > sage: I = O.ideal(7)
> >
> > sage: F = O.residue_field(I)
> >
> > sage: F(f[2])
> >
> ---------------------------------------------------------------------------
> > <type 'exceptions.TypeError'>             Traceback (most recent call
> > last)
> >
> > /home/burhanud/tau_nov14_07/<ipython console> in <module>()
> >
> > /home/burhanud/tau_nov14_07/residue_field.pyx in
> > sage.rings.residue_field.ResidueFiniteField_givaro.__call__()
> >
> > /home/burhanud/tau_nov14_07/finite_field_givaro.pyx in
> > sage.rings.finite_field_givaro.FiniteField_givaro.__call__()
> >
> > <type 'exceptions.TypeError'>: unable to coerce
> >
>

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to