[Hello Robert -- are you in Bristol yet?]

I'm puzzled now.  My comment on inefficiency and Steffen's were based
on the code
>                 for i from 0 <= i <= n/2:
>                     if (i*i) % n == self.ivalue:
>                         return self._new_c(i)
>

but now when I do a.sqrt?? I do not see that code.  Steffen, are you
using 2.8.12?

John


On 09/11/2007, Steffen <[EMAIL PROTECTED]> wrote:
>
> Thx, I am wondering why I did not try the command a.sqrt?? on my own.
>
> However, it seems as the implemented algorithm is not the most
> efficient one. My result from a.sqrt?? from the latest release:
>
> def sqrt(self, extend=True, all=False):
>         cdef int_fast32_t i, n = self.__modulus.int32
>         if n > 100:
>             moduli = self._parent.factored_order()
>         # Unless the modulus is tiny, test to see if we're in the
> really
>         # easy case of n prime, n = 3 mod 4.
>         if n > 100 and n % 4 == 3 and len(moduli) == 1 and moduli[0]
> [1] == 1:
>             if jacobi_int(self.ivalue, self.__modulus.int32) == 1:
>                 # it's a non-zero square, sqrt(a) = a^(p+1)/4
>                 i = mod_pow_int(self.ivalue, (self.__modulus.int32+1)/
> 4, n)
>                 if i > n/2:
>                     i = n-i
>                 if all:
>                     return [self._new_c(i), self._new_c(n-i)]
>                 else:
>                     return self._new_c(i)
>             elif self.ivalue == 0:
>                 return self
>             elif not extend:
>                 raise ValueError, "self must be a square"
>         # Now we use a heuristic to guess whether or not it will
>         # be faster to just brute-force search for squares in a c
> loop...
>         # TODO: more tuning?
>         elif n <= 100 or n / (1 << len(moduli)) < 5000:
>             if all:
>                 return [self._new_c(i) for i from 0 <= i < n if (i*i)
> % n == self.ivalue]
>             else:
>                 for i from 0 <= i <= n/2:
>                     if (i*i) % n == self.ivalue:
>                         return self._new_c(i)
>                 if not extend:
>                     raise ValueError, "self must be a square"
>         # Either it failed but extend was True, or the generic
> algorithm is better
>         return IntegerMod_abstract.sqrt(self, extend=extend, all=all)
>
> The easier %4 == 3 case seems to be implemented efficiently, but the
> %4 == 1 not. The algo from Tonelli and Shanks might be a good solution
> here. Any thoughts on other/better algorithm?
>
> Steffen
>
>
>
>
> On 9 Nov., 18:24, "John Cremona" <[EMAIL PROTECTED]> wrote:
> > Use the ?? operator to see the algorithm:
> >
> > sage: a=GF(next_prime(10^6)).random_element()^2;
> > sage: a.sqrt??
> >
> > Type:           builtin_function_or_method
> > Base Class:     <type 'builtin_function_or_method'>
> > String Form:    <built-in method sqrt of
> > sage.rings.integer_mod.IntegerMod_int64 object at 0x99055a4>
> > Namespace:      Interactive
> > Source:
> >     def sqrt(self, extend=True, all=False):
> >         r"""
> >         Returns square root or square roots of self modulo n.
> >
> >         INPUT:
> >             extend -- bool (default: True); if True, return a square
> >                  root in an extension ring, if necessary. Otherwise,
> >                  raise a ValueError if the square is not in the base ring.
> >             all -- bool (default: False); if True, return *all* square
> >                    roots of self, instead of just one.
> >
> >         ALGORITHM: Calculates the square roots mod $p$ for each of the
> >         primes $p$ dividing the order of the ring, then lifts them
> >         p-adically and uses the CRT to find a square root mod $n$.
> >
> >         See also \code{square_root_mod_prime_power} and
> >         \code{square_root_mod_prime} (in this module) for more
> >         algorithmic details.
> >
> >         EXAMPLES:
> >             sage: mod(-1, 17).sqrt()
> >             4
> >             sage: mod(5, 389).sqrt()
> >             86
> >             sage: mod(7, 18).sqrt()
> >             5
> >             sage: a = mod(14, 5^60).sqrt()
> >             sage: a*a
> >             14
> >             sage: mod(15, 389).sqrt(extend=False)
> >             Traceback (most recent call last):
> >             ...
> >             ValueError: self must be a square
> >             sage: Mod(1/9, next_prime(2^40)).sqrt()^(-2)
> >             9
> >             sage: Mod(1/25, next_prime(2^90)).sqrt()^(-2)
> >             25
> >
> >             sage: a = Mod(3,5); a
> >             3
> >             sage: x = Mod(-1, 360)
> >             sage: x.sqrt(extend=False)
> >             Traceback (most recent call last):
> >             ...
> >             ValueError: self must be a square
> >             sage: y = x.sqrt(); y
> >             sqrt359
> >             sage: y.parent()
> >             Univariate Quotient Polynomial Ring in sqrt359 over Ring
> > of integers modulo 360 with modulus x^2 + 1
> >             sage: y^2
> >             359
> >
> >         We compute all square roots in several cases:
> >             sage: R = Integers(5*2^3*3^2); R
> >             Ring of integers modulo 360
> >             sage: R(40).sqrt(all=True)
> >             [20, 160, 200, 340]
> >             sage: [x for x in R if x^2 == 40]  # Brute force verification
> >             [20, 160, 200, 340]
> >             sage: R(1).sqrt(all=True)
> >             [1, 19, 71, 89, 91, 109, 161, 179, 181, 199, 251, 269,
> > 271, 289, 341, 359]
> >             sage: R(0).sqrt(all=True)
> >             [0, 60, 120, 180, 240, 300]
> >
> >             sage: R = Integers(5*13^3*37); R
> >             Ring of integers modulo 406445
> >             sage: v = R(-1).sqrt(all=True); v
> >             [78853, 111808, 160142, 193097, 213348, 246303, 294637, 327592]
> >             sage: [x^2 for x in v]
> >             [406444, 406444, 406444, 406444, 406444, 406444, 406444, 406444]
> >             sage: v = R(169).sqrt(all=True); min(v), -max(v), len(v)
> >             (13, 13, 104)
> >             sage: all([x^2==169 for x in v])
> >             True
> >
> >         Modulo a power of 2:
> >             sage: R = Integers(2^7); R
> >             Ring of integers modulo 128
> >             sage: a = R(17)
> >             sage: a.sqrt()
> >             23
> >             sage: a.sqrt(all=True)
> >             [23, 41, 87, 105]
> >             sage: [x for x in R if x^2==17]
> >             [23, 41, 87, 105]
> >
> >         """
> >         if self.is_one():
> >             if all:
> >                 return list(self.parent().square_roots_of_one())
> >             else:
> >                 return self
> >
> >         if not self.is_square_c():
> >             if extend:
> >
> >  and so on!
> >
> > John
> >
> > On 09/11/2007, Steffen <[EMAIL PROTECTED]> wrote:
> >
> >
> >
> >
> >
> > > Hi, I need to find square roots in GF(prime). I did it like this:
> >
> > > y = sqrt(GF(prime)(ySquare))
> >
> > > So far I am not quite happy with the calculation periods and I would
> > > like to know which algorithm is used. In my case is prime % 4 == 1,
> > > which is the hardest case to find the square root mod p. I am sage
> > > newbie and probably its again only a command that I cant find. I tried
> > > sqrt? and similar things, but only got the information that sqrt is a
> > > symbolic function. Could somebody tell me which algo is implemented or
> > > better how to find the implemented algo.
> >
> > > Cheers, Steffen
> >
> > --
> > John Cremona
>
>
> >
>


-- 
John Cremona

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to