The XIVE interrupt controller of the POWER9 uses a set of tables to redirect exception from event sources to CPU threads. Among which we choose to model :
- the State Bit Entries (SBE), also known as Event State Buffer (ESB). This is a two bit state machine for each event source which is used to trigger events. The bits are named "P" (pending) and "Q" (queued) and can be controlled by MMIO. - the Interrupt Virtualization Entry (IVE) table, also known as Event Assignment Structure (EAS). This table is indexed by the IRQ number and is looked up to find the Event Queue associated with a triggered event. - the Event Queue Descriptor (EQD) table, also known as Event Notification Descriptor (END). The EQD contains fields that specify the Event Queue on which event data is posted (and later pulled by the OS) and also a target (or VPD) to notify. An additional table was not modeled but we might need to to support the H_INT_SET_OS_REPORTING_LINE hcall: - the Virtual Processor Descriptor (VPD) table, also known as Notification Virtual Target (NVT). The XIVE object is expanded with the tables described above. The size of each table depends on the number of provisioned IRQ and the maximum number of CPUs in the system. The indexing is very basic and might need to be improved for the EQs. Signed-off-by: Cédric Le Goater <c...@kaod.org> --- hw/intc/xive-internal.h | 95 +++++++++++++++++++++++++++++++++++++++++++++++++ hw/intc/xive.c | 72 +++++++++++++++++++++++++++++++++++++ 2 files changed, 167 insertions(+) diff --git a/hw/intc/xive-internal.h b/hw/intc/xive-internal.h index 155c2dcd6066..8e755aa88a14 100644 --- a/hw/intc/xive-internal.h +++ b/hw/intc/xive-internal.h @@ -11,6 +11,89 @@ #include <hw/sysbus.h> +/* Utilities to manipulate these (originaly from OPAL) */ +#define MASK_TO_LSH(m) (__builtin_ffsl(m) - 1) +#define GETFIELD(m, v) (((v) & (m)) >> MASK_TO_LSH(m)) +#define SETFIELD(m, v, val) \ + (((v) & ~(m)) | ((((typeof(v))(val)) << MASK_TO_LSH(m)) & (m))) + +#define PPC_BIT(bit) (0x8000000000000000UL >> (bit)) +#define PPC_BIT32(bit) (0x80000000UL >> (bit)) +#define PPC_BIT8(bit) (0x80UL >> (bit)) +#define PPC_BITMASK(bs, be) ((PPC_BIT(bs) - PPC_BIT(be)) | PPC_BIT(bs)) +#define PPC_BITMASK32(bs, be) ((PPC_BIT32(bs) - PPC_BIT32(be)) | \ + PPC_BIT32(bs)) + +/* IVE/EAS + * + * One per interrupt source. Targets that interrupt to a given EQ + * and provides the corresponding logical interrupt number (EQ data) + * + * We also map this structure to the escalation descriptor inside + * an EQ, though in that case the valid and masked bits are not used. + */ +typedef struct XiveIVE { + /* Use a single 64-bit definition to make it easier to + * perform atomic updates + */ + uint64_t w; +#define IVE_VALID PPC_BIT(0) +#define IVE_EQ_BLOCK PPC_BITMASK(4, 7) /* Destination EQ block# */ +#define IVE_EQ_INDEX PPC_BITMASK(8, 31) /* Destination EQ index */ +#define IVE_MASKED PPC_BIT(32) /* Masked */ +#define IVE_EQ_DATA PPC_BITMASK(33, 63) /* Data written to the EQ */ +} XiveIVE; + +/* EQ */ +typedef struct XiveEQ { + uint32_t w0; +#define EQ_W0_VALID PPC_BIT32(0) +#define EQ_W0_ENQUEUE PPC_BIT32(1) +#define EQ_W0_UCOND_NOTIFY PPC_BIT32(2) +#define EQ_W0_BACKLOG PPC_BIT32(3) +#define EQ_W0_PRECL_ESC_CTL PPC_BIT32(4) +#define EQ_W0_ESCALATE_CTL PPC_BIT32(5) +#define EQ_W0_END_OF_INTR PPC_BIT32(6) +#define EQ_W0_QSIZE PPC_BITMASK32(12, 15) +#define EQ_W0_SW0 PPC_BIT32(16) +#define EQ_W0_FIRMWARE EQ_W0_SW0 /* Owned by FW */ +#define EQ_QSIZE_4K 0 +#define EQ_QSIZE_64K 4 +#define EQ_W0_HWDEP PPC_BITMASK32(24, 31) + uint32_t w1; +#define EQ_W1_ESn PPC_BITMASK32(0, 1) +#define EQ_W1_ESn_P PPC_BIT32(0) +#define EQ_W1_ESn_Q PPC_BIT32(1) +#define EQ_W1_ESe PPC_BITMASK32(2, 3) +#define EQ_W1_ESe_P PPC_BIT32(2) +#define EQ_W1_ESe_Q PPC_BIT32(3) +#define EQ_W1_GENERATION PPC_BIT32(9) +#define EQ_W1_PAGE_OFF PPC_BITMASK32(10, 31) + uint32_t w2; +#define EQ_W2_MIGRATION_REG PPC_BITMASK32(0, 3) +#define EQ_W2_OP_DESC_HI PPC_BITMASK32(4, 31) + uint32_t w3; +#define EQ_W3_OP_DESC_LO PPC_BITMASK32(0, 31) + uint32_t w4; +#define EQ_W4_ESC_EQ_BLOCK PPC_BITMASK32(4, 7) +#define EQ_W4_ESC_EQ_INDEX PPC_BITMASK32(8, 31) + uint32_t w5; +#define EQ_W5_ESC_EQ_DATA PPC_BITMASK32(1, 31) + uint32_t w6; +#define EQ_W6_FORMAT_BIT PPC_BIT32(8) +#define EQ_W6_NVT_BLOCK PPC_BITMASK32(9, 12) +#define EQ_W6_NVT_INDEX PPC_BITMASK32(13, 31) + uint32_t w7; +#define EQ_W7_F0_IGNORE PPC_BIT32(0) +#define EQ_W7_F0_BLK_GROUPING PPC_BIT32(1) +#define EQ_W7_F0_PRIORITY PPC_BITMASK32(8, 15) +#define EQ_W7_F1_WAKEZ PPC_BIT32(0) +#define EQ_W7_F1_LOG_SERVER_ID PPC_BITMASK32(1, 31) +} XiveEQ; + +#define XIVE_EQ_PRIORITY_COUNT 8 +#define XIVE_PRIORITY_MAX (XIVE_EQ_PRIORITY_COUNT - 1) + struct XIVE { SysBusDevice parent; @@ -23,6 +106,18 @@ struct XIVE { uint32_t int_max; /* Max index */ uint32_t int_hw_bot; /* Bottom index of HW IRQ allocator */ uint32_t int_ipi_top; /* Highest IPI index handed out so far + 1 */ + + /* XIVE internal tables */ + void *sbe; + XiveIVE *ivt; + XiveEQ *eqdt; }; +void xive_reset(void *dev); +XiveIVE *xive_get_ive(XIVE *x, uint32_t isn); +XiveEQ *xive_get_eq(XIVE *x, uint32_t idx); + +bool xive_eq_for_target(XIVE *x, uint32_t target, uint8_t prio, + uint32_t *out_eq_idx); + #endif /* _INTC_XIVE_INTERNAL_H */ diff --git a/hw/intc/xive.c b/hw/intc/xive.c index 5b4ea915d87c..5b14d8155317 100644 --- a/hw/intc/xive.c +++ b/hw/intc/xive.c @@ -35,6 +35,27 @@ */ #define MAX_HW_IRQS_ENTRIES (8 * 1024) + +void xive_reset(void *dev) +{ + XIVE *x = XIVE(dev); + int i; + + /* SBEs are initialized to 0b01 which corresponds to "ints off" */ + memset(x->sbe, 0x55, x->int_count / 4); + + /* Clear and mask all valid IVEs */ + for (i = x->int_base; i < x->int_max; i++) { + XiveIVE *ive = &x->ivt[i]; + if (ive->w & IVE_VALID) { + ive->w = IVE_VALID | IVE_MASKED; + } + } + + /* clear all EQs */ + memset(x->eqdt, 0, x->nr_targets * XIVE_EQ_PRIORITY_COUNT * sizeof(XiveEQ)); +} + static void xive_init(Object *obj) { ; @@ -62,6 +83,19 @@ static void xive_realize(DeviceState *dev, Error **errp) if (x->int_ipi_top < 0x10) { x->int_ipi_top = 0x10; } + + /* Allocate SBEs (State Bit Entry). 2 bits, so 4 entries per byte */ + x->sbe = g_malloc0(x->int_count / 4); + + /* Allocate the IVT (Interrupt Virtualization Table) */ + x->ivt = g_malloc0(x->int_count * sizeof(XiveIVE)); + + /* Allocate the EQDT (Event Queue Descriptor Table), 8 priorities + * for each thread in the system */ + x->eqdt = g_malloc0(x->nr_targets * XIVE_EQ_PRIORITY_COUNT * + sizeof(XiveEQ)); + + qemu_register_reset(xive_reset, dev); } static Property xive_properties[] = { @@ -92,3 +126,41 @@ static void xive_register_types(void) } type_init(xive_register_types) + +XiveIVE *xive_get_ive(XIVE *x, uint32_t lisn) +{ + uint32_t idx = lisn; + + if (idx < x->int_base || idx >= x->int_max) { + return NULL; + } + + return &x->ivt[idx]; +} + +XiveEQ *xive_get_eq(XIVE *x, uint32_t idx) +{ + if (idx >= x->nr_targets * XIVE_EQ_PRIORITY_COUNT) { + return NULL; + } + + return &x->eqdt[idx]; +} + +/* TODO: improve EQ indexing. This is very simple and relies on the + * fact that target (CPU) numbers start at 0 and are contiguous. It + * should be OK for sPAPR. + */ +bool xive_eq_for_target(XIVE *x, uint32_t target, uint8_t priority, + uint32_t *out_eq_idx) +{ + if (priority > XIVE_PRIORITY_MAX || target >= x->nr_targets) { + return false; + } + + if (out_eq_idx) { + *out_eq_idx = target + priority; + } + + return true; +} -- 2.7.5