On Mon, 09 Jul 2007 23:51:25 -0700, "[EMAIL PROTECTED]" <[EMAIL PROTECTED]> wrote:
>On Jul 9, 11:42?pm, Paul McGuire <[EMAIL PROTECTED]> wrote: >> On Jul 9, 11:21 pm, "Jim Langston" <[EMAIL PROTECTED]> wrote:> In Python 2.5 >> on intel, the statement >> > 2**2**2**2**2 >> > evaluates to>>> 2**2**2**2**2 >> >> > 200352993040684646497907235156025575044782547556975141926501697371089405955 >> > 63114 >> > 530895061308809333481010382343429072631818229493821188126688695063647615470 >> > 29165 >> > 041871916351587966347219442930927982084309104855990570159318959639524863372 >> > 36720 >> >> <snip> >> >> Exponentiation is right associative, so this is the same as: >> >> 2**(2**(2**(2**2))) >> 2**2**2**4 >> 2**2**16 >> 2**65536 >> >> 2=10**0.3010, so 2**65536 is approx 10**19726 >> >> There are 19730 digits in your answer, > >>>> import gmpy >>>> n = 2**2**2**2**2 >>>> gmpy.numdigits(n) >19729 > >Did you count the 'L'? numdigits(n)? What? 'L' is a digit in Python? I'm going back to Fortran! wwwayne >>so this seems to be at least in >> the ball park. >> >> -- Paul > -- http://mail.python.org/mailman/listinfo/python-list