NaN usually indicates some kind of bug. If I can get a reproduction case,
then I have at least a chance of fixing it.

On Wed, Dec 20, 2023 at 2:17 AM Alan Mead <ame...@alanmead.org> wrote:

> Tim,
>
> NaN looks like a numerical error. I'm curious, how may levels does the
> variable have and how many dummy variables are you using?
>
> If the original variable has K levels, you should have K-1 dummy
> variables. For example, if your variable were location (1=rural,
> 2=suburban, 3=urban) then you would pick one level to be the reference and
> create two dummy variables, perhaps:
>
> recode location (1=1) (else=0) into dum1.
>
> recode location (2=1) (else=0) into dum2.
>
> Then the coefficients of dum1 and dum2 tell you how living in a rural
> (dum1) or suburban (dum2) area compares to living in an urban area.
>
> The model won't be defined if you use K variables for K levels.
>
> I notice that both of the zeros are for xxx_1 variables, so that suggested
> possibly not coding the categorical variable correctly. But I don't know if
> that's what you are seeing. You could also get zeros if there were no
> instances of that dummy code, but you shouldn't see NaN values. It could
> also be another problem, or a bug. In fact, I think it's probably a bug to
> see NaN's...
>
> -Alan
>
>
> On 12/20/23 3:46 AM, tim.goodsp...@btinternet.com wrote:
>
> A basic stat’s question and a specific PSPP query, please.  Any help
> gratefully received.  I can’t see this in the archives anywhere (searching
> for ‘categorical’ and ‘dummy’).
>
>
>
> For a linear regression, some variables are categorical and so included
> using dummy coding (Coding Systems for Categorical Variables in
> Regression Analysis (ucla.edu)
> <https://stats.oarc.ucla.edu/spss/faq/coding-systems-for-categorical-variables-in-regression-analysis-2/#:~:text=Categorical%20variables%20require%20special%20attention,entered%20into%20the%20regression%20model.>
> ).
>
>
>
> *basic stat’s question: *This results in a zero coefficient and zero
> standard error for some variables, as shown in the example below.  Is this
> correct?  There is little or no linear relationship to be found?
>
>
>
> *specific PSPP query: *if there is little relationship/the coefficient is
> very small, is there a way to tell PSPP to show the very small value
> instead of zero?
>
>
>
> Thanks in advance
>
>
>
> Table: Model Summary (adjRA1SR1)
>
>
>
>
>
>
>
>
>
>
>
> R
>
> R Square
>
> Adjusted R Square
>
> Std. Error of the Estimate
>
>
>
>
>
>
>
> 0.55723
>
> 0.310505
>
> 0.302797
>
> 0.8359
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> Table: ANOVA (adjRA1SR1)
>
>
>
>
>
>
>
>
>
>
>
>
>
> Sum of Squares
>
> df
>
> Mean Square
>
> F
>
> Sig.
>
>
>
>
>
> Regression
>
> 619.25791
>
> 22
>
> 28.148087
>
> 40.284698
>
> 0
>
>
>
>
>
> Residual
>
> 1375.0987
>
> 1968
>
> 0.698729
>
>
>
>
>
>
>
>
>
> Total
>
> 1994.3566
>
> 1990
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> Table: Coefficients (adjRA1SR1)
>
>
>
>
>
>
>
>
>
>
>
>
>
> Unstandardized Coefficients
>
> Standardized Coefficients
>
> t
>
> Sig.
>
> 95% Confidence Interval for B
>
>
>
> B
>
> Std. Error
>
> Beta
>
>
>
>
>
> Lower Bound
>
> Upper Bound
>
> (Constant)
>
> 8.163407
>
> 0.310014
>
> 0
>
> 26.332394
>
> 0
>
> 7.555417
>
> 8.771397
>
> lnSTINC
>
> -0.036745
>
> 0.011677
>
> -0.088107
>
> -3.146888
>
> 0.002
>
> -0.059645
>
> -0.013845
>
> RA1PKHSIZ
>
> -0.011834
>
> 0.016218
>
> -0.020561
>
> -0.729708
>
> 0.466
>
> -0.043639
>
> 0.019971
>
> RA1PRAGE
>
> -0.039326
>
> 0.011175
>
> -0.550388
>
> -3.519082
>
> 0
>
> -0.061242
>
> -0.01741
>
> sqPRAGE
>
> 0.000464
>
> 0.000109
>
> 0.666977
>
> 4.258349
>
> 0
>
> 0.00025
>
> 0.000678
>
> RA1PRSEX
>
> 0.13709
>
> 0.03935
>
> 0.068446
>
> 3.483888
>
> 0.001
>
> 0.059918
>
> 0.214261
>
> RA1PB19_1
>
> 0
>
> 0
>
> 0
>
> NaN
>
> NaN
>
> 0
>
> 0
>
> RA1PB19_2
>
> -0.485628
>
> 0.170694
>
> -0.054029
>
> -2.845015
>
> 0.004
>
> -0.820389
>
> -0.150867
>
> RA1PB19_3
>
> -0.324574
>
> 0.058981
>
> -0.109094
>
> -5.503011
>
> 0
>
> -0.440246
>
> -0.208902
>
> RA1PB19_4
>
> -0.333625
>
> 0.089807
>
> -0.074169
>
> -3.714896
>
> 0
>
> -0.509752
>
> -0.157497
>
> RA1PB1
>
> -0.002888
>
> 0.008407
>
> -0.007002
>
> -0.343559
>
> 0.731
>
> -0.019376
>
> 0.0136
>
> RA1SG17A_1
>
> 0
>
> 0
>
> 0
>
> NaN
>
> NaN
>
> 0
>
> 0
>
> RA1SG17A_2
>
> -0.061221
>
> 0.053837
>
> -0.021822
>
> -1.137147
>
> 0.256
>
> -0.166804
>
> 0.044363
>
> RA1PA1
>
> -0.15082
>
> 0.022182
>
> -0.160102
>
> -6.7991
>
> 0
>
> -0.194324
>
> -0.107317
>
> RA1PA2
>
> -0.248882
>
> 0.024367
>
> -0.243609
>
> -10.214077
>
> 0
>
> -0.29667
>
> -0.201095
>
> RA1SC1
>
> -0.328042
>
> 0.073134
>
> -0.08782
>
> -4.485512
>
> 0
>
> -0.471469
>
> -0.184614
>
> RA1PF3bin
>
> 0.003064
>
> 0.041159
>
> 0.001422
>
> 0.074435
>
> 0.941
>
> -0.077655
>
> 0.083783
>
> RA1PF7A_2
>
> 0.009538
>
> 0.086914
>
> 0.002111
>
> 0.109735
>
> 0.913
>
> -0.160917
>
> 0.179992
>
> RA1PF7A_3
>
> 0.14177
>
> 0.166844
>
> 0.016081
>
> 0.849712
>
> 0.396
>
> -0.18544
>
> 0.468979
>
> RA1PF7A_4
>
> -0.104009
>
> 0.155971
>
> -0.01266
>
> -0.666848
>
> 0.505
>
> -0.409894
>
> 0.201877
>
> RA1PF7A_5
>
> 0.173309
>
> 0.59246
>
> 0.005486
>
> 0.292525
>
> 0.77
>
> -0.988606
>
> 1.335224
>
> RA1PF7A_6
>
> 0.064264
>
> 0.080864
>
> 0.01504
>
> 0.794712
>
> 0.427
>
> -0.094325
>
> 0.222853
>
> RA1PG2
>
> -0.350528
>
> 0.030049
>
> -0.233421
>
> -11.66509
>
> 0
>
> -0.40946
>
> -0.291597
>
>
>
>
>
>
>
> --
>
> Alan D. Mead, Ph.D.
> President, Talent Algorithms Inc.
>
> science + technology = better workers
> https://talalg.com
>
>
> Linus' Law: Given enough eyeballs, all bugs are shallow.
>
>
>
>

Reply via email to