Gostaria de poder contribuir, mas desconheço as técnicas usadas.

On Tue, Oct 11, 2016 at 10:24 AM, Joao Marcos <botoc...@gmail.com> wrote:

> Bem, certamente os nossos colegas estão precisando menos da nossa
> *confiança* na correção do resultado e mais da *leitura competente* do
> material que produziram...
>
> A propósito, Hermann pediu para avisar que a página
>   http://www.tecmf.inf.puc-rio.br/NPPSPACE
> foi atualizada com material explicativo, e para dizer que "há alguns
> problemas de formatação (código tex misturado com wiki), mas é
> perfeitamente inteligível".
>
> JM
>
>
> >>> ---------- Forwarded message ----------
> >>>
> >>> Date: Sat, 8 Oct 2016 10:06:50 -0600
> >>> From: Richard Zach <rz...@ucalgary.ca>
> >>> To: <f...@cs.nyu.edu>
> >>>
> >>>
> >>> New on arXiv this week; has anyone read it/formed an opinion?
> >>>
> >>> https://arxiv.org/abs/1609.09562
> >>>
> >>> NP vs PSPACE
> >>> Lew Gordeev <https://arxiv.org/find/cs/1/au:+Gordeev_L/0/1/0/all/0/1>,
> >>> Edward Hermann Haeusler
> >>> <https://arxiv.org/find/cs/1/au:+Haeusler_E/0/1/0/all/0/1>
> >>> (Submitted on 30 Sep 2016)
> >>>
> >>> We present a proof of the conjecture $\mathcal{NP}$ =
> >>> $\mathcal{PSPACE}$ by showing that arbitrary tautologies of
> >>> Johansson's minimal propositional logic admit "small" polynomial-size
> >>> dag-like natural deductions in Prawitz's system for minimal
> >>> propositional logic. These "small" deductions arise from standard
> >>> "large"\ tree-like inputs by horizontal dag-like compression that is
> >>> obtained by merging distinct nodes labeled with identical formulas
> >>> occurring in horizontal sections of deductions involved. The
> >>> underlying "geometric" idea: if the height, $h\left( \partial \right)
> >>> $ , and the total number of distinct formulas, $\phi \left( \partial
> >>> \right) $ , of a given tree-like deduction $\partial$ of a minimal
> >>> tautology $\rho$ are both polynomial in the length of $\rho$, $\left|
> >>> \rho \right|$, then the size of the horizontal dag-like compression is
> >>> at most $h\left( \partial \right) \times \phi \left( \partial \right)
> >>> $, and hence polynomial in $\left| \rho \right|$. The attached proof
> >>> is due to the first author, but it was the second author who proposed
> >>> an initial idea to attack a weaker conjecture $\mathcal{NP}=
> >>> \mathcal{\mathit{co}NP}$ by reductions in diverse natural deduction
> >>> formalisms for propositional logic. That idea included interactive use
> >>> of minimal, intuitionistic and classical formalisms, so its practical
> >>> implementation was too involved. The attached proof of $
> >>> \mathcal{NP}=\mathcal{PSPACE}$ runs inside the natural deduction
> >>> interpretation of Hudelmaier's cutfree sequent calculus for minimal
> >>> logic.
>
> --
> Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L"
> dos Grupos do Google.
> Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie
> um e-mail para logica-l+unsubscr...@dimap.ufrn.br.
> Para postar neste grupo, envie um e-mail para logica-l@dimap.ufrn.br.
> Visite este grupo em https://groups.google.com/a/
> dimap.ufrn.br/group/logica-l/.
> Para ver esta discussão na web, acesse https://groups.google.com/a/
> dimap.ufrn.br/d/msgid/logica-l/CAO6j_LgdR%2BQkG_
> 6EXQQXdmj0rttxforXPH_u6Hzfs%3DGCj46mVw%40mail.gmail.com.
>



-- 
fad

ahhata alati, awienta Wilushati

-- 
Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos 
Grupos do Google.
Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um 
e-mail para logica-l+unsubscr...@dimap.ufrn.br.
Para postar neste grupo, envie um e-mail para logica-l@dimap.ufrn.br.
Visite este grupo em https://groups.google.com/a/dimap.ufrn.br/group/logica-l/.
Para ver esta discussão na web, acesse 
https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CA%2BuR7BL0z1UpyGcRNXOD8mknR%3DO9xhPx%3Dy5HeiZLyiOA_4ffxg%40mail.gmail.com.

Responder a