Gostaria de poder contribuir, mas desconheço as técnicas usadas. On Tue, Oct 11, 2016 at 10:24 AM, Joao Marcos <botoc...@gmail.com> wrote:
> Bem, certamente os nossos colegas estão precisando menos da nossa > *confiança* na correção do resultado e mais da *leitura competente* do > material que produziram... > > A propósito, Hermann pediu para avisar que a página > http://www.tecmf.inf.puc-rio.br/NPPSPACE > foi atualizada com material explicativo, e para dizer que "há alguns > problemas de formatação (código tex misturado com wiki), mas é > perfeitamente inteligível". > > JM > > > >>> ---------- Forwarded message ---------- > >>> > >>> Date: Sat, 8 Oct 2016 10:06:50 -0600 > >>> From: Richard Zach <rz...@ucalgary.ca> > >>> To: <f...@cs.nyu.edu> > >>> > >>> > >>> New on arXiv this week; has anyone read it/formed an opinion? > >>> > >>> https://arxiv.org/abs/1609.09562 > >>> > >>> NP vs PSPACE > >>> Lew Gordeev <https://arxiv.org/find/cs/1/au:+Gordeev_L/0/1/0/all/0/1>, > >>> Edward Hermann Haeusler > >>> <https://arxiv.org/find/cs/1/au:+Haeusler_E/0/1/0/all/0/1> > >>> (Submitted on 30 Sep 2016) > >>> > >>> We present a proof of the conjecture $\mathcal{NP}$ = > >>> $\mathcal{PSPACE}$ by showing that arbitrary tautologies of > >>> Johansson's minimal propositional logic admit "small" polynomial-size > >>> dag-like natural deductions in Prawitz's system for minimal > >>> propositional logic. These "small" deductions arise from standard > >>> "large"\ tree-like inputs by horizontal dag-like compression that is > >>> obtained by merging distinct nodes labeled with identical formulas > >>> occurring in horizontal sections of deductions involved. The > >>> underlying "geometric" idea: if the height, $h\left( \partial \right) > >>> $ , and the total number of distinct formulas, $\phi \left( \partial > >>> \right) $ , of a given tree-like deduction $\partial$ of a minimal > >>> tautology $\rho$ are both polynomial in the length of $\rho$, $\left| > >>> \rho \right|$, then the size of the horizontal dag-like compression is > >>> at most $h\left( \partial \right) \times \phi \left( \partial \right) > >>> $, and hence polynomial in $\left| \rho \right|$. The attached proof > >>> is due to the first author, but it was the second author who proposed > >>> an initial idea to attack a weaker conjecture $\mathcal{NP}= > >>> \mathcal{\mathit{co}NP}$ by reductions in diverse natural deduction > >>> formalisms for propositional logic. That idea included interactive use > >>> of minimal, intuitionistic and classical formalisms, so its practical > >>> implementation was too involved. The attached proof of $ > >>> \mathcal{NP}=\mathcal{PSPACE}$ runs inside the natural deduction > >>> interpretation of Hudelmaier's cutfree sequent calculus for minimal > >>> logic. > > -- > Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" > dos Grupos do Google. > Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie > um e-mail para logica-l+unsubscr...@dimap.ufrn.br. > Para postar neste grupo, envie um e-mail para logica-l@dimap.ufrn.br. > Visite este grupo em https://groups.google.com/a/ > dimap.ufrn.br/group/logica-l/. > Para ver esta discussão na web, acesse https://groups.google.com/a/ > dimap.ufrn.br/d/msgid/logica-l/CAO6j_LgdR%2BQkG_ > 6EXQQXdmj0rttxforXPH_u6Hzfs%3DGCj46mVw%40mail.gmail.com. > -- fad ahhata alati, awienta Wilushati -- Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos Grupos do Google. Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um e-mail para logica-l+unsubscr...@dimap.ufrn.br. Para postar neste grupo, envie um e-mail para logica-l@dimap.ufrn.br. Visite este grupo em https://groups.google.com/a/dimap.ufrn.br/group/logica-l/. Para ver esta discussão na web, acesse https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CA%2BuR7BL0z1UpyGcRNXOD8mknR%3DO9xhPx%3Dy5HeiZLyiOA_4ffxg%40mail.gmail.com.