Bem, certamente os nossos colegas estão precisando menos da nossa
*confiança* na correção do resultado e mais da *leitura competente* do
material que produziram...

A propósito, Hermann pediu para avisar que a página
  http://www.tecmf.inf.puc-rio.br/NPPSPACE
foi atualizada com material explicativo, e para dizer que "há alguns
problemas de formatação (código tex misturado com wiki), mas é
perfeitamente inteligível".

JM


>>> ---------- Forwarded message ----------
>>>
>>> Date: Sat, 8 Oct 2016 10:06:50 -0600
>>> From: Richard Zach <rz...@ucalgary.ca>
>>> To: <f...@cs.nyu.edu>
>>>
>>>
>>> New on arXiv this week; has anyone read it/formed an opinion?
>>>
>>> https://arxiv.org/abs/1609.09562
>>>
>>> NP vs PSPACE
>>> Lew Gordeev <https://arxiv.org/find/cs/1/au:+Gordeev_L/0/1/0/all/0/1>,
>>> Edward Hermann Haeusler
>>> <https://arxiv.org/find/cs/1/au:+Haeusler_E/0/1/0/all/0/1>
>>> (Submitted on 30 Sep 2016)
>>>
>>> We present a proof of the conjecture $\mathcal{NP}$ =
>>> $\mathcal{PSPACE}$ by showing that arbitrary tautologies of
>>> Johansson's minimal propositional logic admit "small" polynomial-size
>>> dag-like natural deductions in Prawitz's system for minimal
>>> propositional logic. These "small" deductions arise from standard
>>> "large"\ tree-like inputs by horizontal dag-like compression that is
>>> obtained by merging distinct nodes labeled with identical formulas
>>> occurring in horizontal sections of deductions involved. The
>>> underlying "geometric" idea: if the height, $h\left( \partial \right)
>>> $ , and the total number of distinct formulas, $\phi \left( \partial
>>> \right) $ , of a given tree-like deduction $\partial$ of a minimal
>>> tautology $\rho$ are both polynomial in the length of $\rho$, $\left|
>>> \rho \right|$, then the size of the horizontal dag-like compression is
>>> at most $h\left( \partial \right) \times \phi \left( \partial \right)
>>> $, and hence polynomial in $\left| \rho \right|$. The attached proof
>>> is due to the first author, but it was the second author who proposed
>>> an initial idea to attack a weaker conjecture $\mathcal{NP}=
>>> \mathcal{\mathit{co}NP}$ by reductions in diverse natural deduction
>>> formalisms for propositional logic. That idea included interactive use
>>> of minimal, intuitionistic and classical formalisms, so its practical
>>> implementation was too involved. The attached proof of $
>>> \mathcal{NP}=\mathcal{PSPACE}$ runs inside the natural deduction
>>> interpretation of Hudelmaier's cutfree sequent calculus for minimal
>>> logic.

-- 
Você está recebendo esta mensagem porque se inscreveu no grupo "LOGICA-L" dos 
Grupos do Google.
Para cancelar inscrição nesse grupo e parar de receber e-mails dele, envie um 
e-mail para logica-l+unsubscr...@dimap.ufrn.br.
Para postar neste grupo, envie um e-mail para logica-l@dimap.ufrn.br.
Visite este grupo em https://groups.google.com/a/dimap.ufrn.br/group/logica-l/.
Para ver esta discussão na web, acesse 
https://groups.google.com/a/dimap.ufrn.br/d/msgid/logica-l/CAO6j_LgdR%2BQkG_6EXQQXdmj0rttxforXPH_u6Hzfs%3DGCj46mVw%40mail.gmail.com.

Responder a