Hi Thomas, yes, you’re totally right. My original problem cannot be resolved just in scope of set theory. I’m trying to prove the uniqueness of measure:
[UNIQUENESS_OF_MEASURE] ∀sp sts f u v. sp ∈ sts ∧ subset_class sp sts ∧ (∀s t. s ∈ sts ∧ t ∈ sts ⇒ s ∩ t ∈ sts) ∧ f ∈ (𝕌(:num) -> sts) ∧ (∀n. f n ⊆ f (SUC n)) ∧ (sp = BIGUNION (IMAGE f 𝕌(:num))) ∧ measure_space (sp,subsets (sigma sp sts),u) ∧ measure_space (sp,subsets (sigma sp sts),v) ∧ (∀n. u (f n) < PosInf) ∧ (∀s. s ∈ sts ⇒ (u s = v s)) ⇒ ∀s. s ∈ subsets (sigma sp sts) ⇒ (u s = v s) And I was approaching a measure (u a) using the sup of an image: u a = sup (IMAGE (u ∘ (λi. f i ∩ a)) 𝕌(:num)) in which (u :’a set -> extreal) is a measure function, f is the increasing sequence that I mentioned before. Now I believe the correct way to reduce “sup” is to use the following non-trivial monotone convergence theorem already in HOL’s measureTheory: [MONOTONE_CONVERGENCE] ⊢ ∀m s f. measure_space m ∧ f ∈ (𝕌(:num) -> measurable_sets m) ∧ (∀n. f n ⊆ f (SUC n)) ∧ (s = BIGUNION (IMAGE f 𝕌(:num))) ⇒ (sup (IMAGE (measure m ∘ f) 𝕌(:num)) = measure m s) Above theorem does require that (f 0 = EMPTY), as I expected. Now I have confidence to finish the whole proof. —Chun > Il giorno 18 set 2018, alle ore 10:36, Thomas Tuerk <tho...@tuerk-brechen.de> > ha scritto: > > Hi Chun, > > no, it still does not hold. The problem is that case that "a" might be > infinite and while there is for every element 'e' of 'a' an 'n' with 'e IN f > n' you need arbitrary large ones. > > A tiny modification of Ramana's counterexample is > > f x := count x > sp := UNIV > a := { n | even n } > Cheers > > Thomas > > On 18.09.2018 10:25, Chun Tian (binghe) wrote: >> Hi Ramana, >> >> thanks for your help. Sorry, I realized that the case “a = sp” can be >> eliminated from other assumptions, thus I actually have another constraint >> “a ≠ sp” in my original goals: >> >> ∃x. a ⊆ f x >> ------------------------------------ >> 4. f 0 = ∅ >> 5. ∀i j. i ≤ j ⇒ f i ⊆ f j >> 6. BIGUNION (IMAGE f 𝕌(:num)) = sp >> 21. a ≠ sp >> 23. ∀n. f n ⊆ sp >> 24. a ⊆ sp >> >> in this case your opposite proof doesn’t work any more. Also, I replaced the >> monotonicity of f into another form, I don’t know which one is easier to >> use. The assumption "f 0 = ∅” should be optional, I guess. >> >> Now this should be a true statement, right? >> >> —Chun >> >>> Il giorno 18 set 2018, alle ore 01:26, Ramana Kumar <ram...@kumar.id.au >>> <mailto:ram...@kumar.id.au>> ha scritto: >>> >>> I think this is false. Here's a proof of the opposite, with the type of f >>> instantiated to a num set generator: >>> >>> val thm = Q.prove( >>> `¬( >>> ∀(f:num->num->bool) a sp. >>> (f 0 = ∅) ∧ >>> (∀n. f n ⊆ f (SUC n)) ∧ >>> (∀n. f n ⊆ sp) ∧ >>> (BIGUNION (IMAGE f 𝕌(:num)) = sp) ∧ >>> (a ⊆ sp) ⇒ >>> ∃x. a ⊆ f x)`, >>> rw[] >>> \\ qexists_tac`count` >>> \\ qexists_tac`UNIV` >>> \\ rw[SUBSET_DEF, PULL_EXISTS] >>> >- metis_tac[] >>> >- ( >>> rw[Once EXTENSION] >>> \\ qexists_tac`count (SUC x)` >>> \\ rw[] ) >>> >- ( >>> rw[EXTENSION] >>> \\ qexists_tac`SUC x` >>> \\ rw[] )); >>> >>> >>> On Tue, 18 Sep 2018 at 00:01, Chun Tian (binghe) <binghe.l...@gmail.com >>> <mailto:binghe.l...@gmail.com>> wrote: >>> sorry, I also have this necessary assumption: >>> >>> 5. BIGUNION (IMAGE f 𝕌(:num)) = sp >>> >>> > Il giorno 18 set 2018, alle ore 01:00, Chun Tian (binghe) >>> > <binghe.l...@gmail.com <mailto:binghe.l...@gmail.com>> ha scritto: >>> > >>> > Hi, >>> > >>> > I ran into the following goal in the proof of a big theorem: >>> > >>> > ∃x. a ⊆ f x >>> > ------------------------------------ >>> > 3. f 0 = ∅ >>> > 4. ∀n. f n ⊆ f (SUC n) >>> > 20. ∀n. f n ⊆ sp >>> > 21. a ⊆ sp >>> > >>> > I have an increasing sequence of sets (f n) from empty to the whole space >>> > (sp), and I have a single set “a” (⊆ sp). It looks *obvious* that, I can >>> > always choose a big enough index x such that (f x) will contain “a”. But >>> > how can I make this argument formal? >>> > >>> > thanks, >>> > >>> > Chun >>> > >>> >>> _______________________________________________ >>> hol-info mailing list >>> hol-info@lists.sourceforge.net <mailto:hol-info@lists.sourceforge.net> >>> https://lists.sourceforge.net/lists/listinfo/hol-info >>> <https://lists.sourceforge.net/lists/listinfo/hol-info> >> >> >> >> >> >> _______________________________________________ >> hol-info mailing list >> hol-info@lists.sourceforge.net <mailto:hol-info@lists.sourceforge.net> >> https://lists.sourceforge.net/lists/listinfo/hol-info >> <https://lists.sourceforge.net/lists/listinfo/hol-info> > > _______________________________________________ > hol-info mailing list > hol-info@lists.sourceforge.net > https://lists.sourceforge.net/lists/listinfo/hol-info
signature.asc
Description: Message signed with OpenPGP using GPGMail
_______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info