I think this is false. Here's a proof of the opposite, with the type of f
instantiated to a num set generator:

val thm = Q.prove(
`¬(
  ∀(f:num->num->bool) a sp.
  (f 0 = ∅) ∧
  (∀n. f n ⊆ f (SUC n)) ∧
  (∀n. f n ⊆ sp) ∧
  (BIGUNION (IMAGE f 𝕌(:num)) = sp) ∧
  (a ⊆ sp) ⇒
     ∃x. a ⊆ f x)`,
  rw[]
  \\ qexists_tac`count`
  \\ qexists_tac`UNIV`
  \\ rw[SUBSET_DEF, PULL_EXISTS]
  >- metis_tac[]
  >- (
    rw[Once EXTENSION]
    \\ qexists_tac`count (SUC x)`
    \\ rw[] )
  >- (
    rw[EXTENSION]
    \\ qexists_tac`SUC x`
    \\ rw[] ));


On Tue, 18 Sep 2018 at 00:01, Chun Tian (binghe) <binghe.l...@gmail.com>
wrote:

> sorry, I also have this necessary assumption:
>
>      5.  BIGUNION (IMAGE f 𝕌(:num)) = sp
>
> > Il giorno 18 set 2018, alle ore 01:00, Chun Tian (binghe) <
> binghe.l...@gmail.com> ha scritto:
> >
> > Hi,
> >
> > I ran into the following goal in the proof of a big theorem:
> >
> >   ∃x. a ⊆ f x
> >   ------------------------------------
> >     3.  f 0 = ∅
> >     4.  ∀n. f n ⊆ f (SUC n)
> >    20.  ∀n. f n ⊆ sp
> >    21.  a ⊆ sp
> >
> > I have an increasing sequence of sets (f n) from empty to the whole
> space (sp), and I have a single set “a” (⊆ sp). It looks *obvious* that, I
> can always choose a big enough index x such that (f x) will contain “a”.
> But how can I make this argument formal?
> >
> > thanks,
> >
> > Chun
> >
>
> _______________________________________________
> hol-info mailing list
> hol-info@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/hol-info
>
_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to