Hi Ramana, thanks for your help. Sorry, I realized that the case “a = sp” can be eliminated from other assumptions, thus I actually have another constraint “a ≠ sp” in my original goals:
∃x. a ⊆ f x ------------------------------------ 4. f 0 = ∅ 5. ∀i j. i ≤ j ⇒ f i ⊆ f j 6. BIGUNION (IMAGE f 𝕌(:num)) = sp 21. a ≠ sp 23. ∀n. f n ⊆ sp 24. a ⊆ sp in this case your opposite proof doesn’t work any more. Also, I replaced the monotonicity of f into another form, I don’t know which one is easier to use. The assumption "f 0 = ∅” should be optional, I guess. Now this should be a true statement, right? —Chun > Il giorno 18 set 2018, alle ore 01:26, Ramana Kumar <ram...@kumar.id.au> ha > scritto: > > I think this is false. Here's a proof of the opposite, with the type of f > instantiated to a num set generator: > > val thm = Q.prove( > `¬( > ∀(f:num->num->bool) a sp. > (f 0 = ∅) ∧ > (∀n. f n ⊆ f (SUC n)) ∧ > (∀n. f n ⊆ sp) ∧ > (BIGUNION (IMAGE f 𝕌(:num)) = sp) ∧ > (a ⊆ sp) ⇒ > ∃x. a ⊆ f x)`, > rw[] > \\ qexists_tac`count` > \\ qexists_tac`UNIV` > \\ rw[SUBSET_DEF, PULL_EXISTS] > >- metis_tac[] > >- ( > rw[Once EXTENSION] > \\ qexists_tac`count (SUC x)` > \\ rw[] ) > >- ( > rw[EXTENSION] > \\ qexists_tac`SUC x` > \\ rw[] )); > > > On Tue, 18 Sep 2018 at 00:01, Chun Tian (binghe) <binghe.l...@gmail.com > <mailto:binghe.l...@gmail.com>> wrote: > sorry, I also have this necessary assumption: > > 5. BIGUNION (IMAGE f 𝕌(:num)) = sp > > > Il giorno 18 set 2018, alle ore 01:00, Chun Tian (binghe) > > <binghe.l...@gmail.com <mailto:binghe.l...@gmail.com>> ha scritto: > > > > Hi, > > > > I ran into the following goal in the proof of a big theorem: > > > > ∃x. a ⊆ f x > > ------------------------------------ > > 3. f 0 = ∅ > > 4. ∀n. f n ⊆ f (SUC n) > > 20. ∀n. f n ⊆ sp > > 21. a ⊆ sp > > > > I have an increasing sequence of sets (f n) from empty to the whole space > > (sp), and I have a single set “a” (⊆ sp). It looks *obvious* that, I can > > always choose a big enough index x such that (f x) will contain “a”. But > > how can I make this argument formal? > > > > thanks, > > > > Chun > > > > _______________________________________________ > hol-info mailing list > hol-info@lists.sourceforge.net <mailto:hol-info@lists.sourceforge.net> > https://lists.sourceforge.net/lists/listinfo/hol-info > <https://lists.sourceforge.net/lists/listinfo/hol-info>
signature.asc
Description: Message signed with OpenPGP using GPGMail
_______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info