Hi Micah,
Thank you for your information about in-memory row-oriented standard.
After days of work, I find that it is exactly the thing we need now. I
looked into the
discuss you mentioned. It seems no one takes up the work. Is there anything
I can
do to speed up us having in-memory row-oriented standard?

On Fri, Apr 26, 2019 at 11:49 AM Micah Kornfield <emkornfi...@gmail.com>
wrote:

> There has also been talk previously on the mailing list of creating an
> in-memory row-oriented standard [1], but I don't think anyone has had
> bandwidth to take up the work to gather requirements, design or implement
> it yet.
>
> I think this would be valuable but personally, I'd like to get the column
> oriented standard to "1.0" before taking on this work.
>
>
> [1]
>
> https://lists.apache.org/thread.html/4818cb3d2ffb4677b24a4279c329fc518a1ac1c9d3017399a4269199@%3Cdev.arrow.apache.org%3E
>
> On Thu, Apr 25, 2019 at 7:38 PM Philipp Moritz <pcmor...@gmail.com> wrote:
>
> > Hey Shawn,
> >
> > Thanks for these benchmarks! This is indeed a workload we would like to
> > support well in Arrow/Plasma/Ray (if you are using Ray, using Plasma as a
> > shared memory transport but some of the issues this raises will apply
> more
> > widely to Arrow and other possible IPC/RPC transports like Flight etc.).
> >
> > So far the serialization is mostly optimized for larger objects (as you
> > have seen). We should be able tooptimize this more, there should be some
> > low-hanging fruit here since I don't think there has been much work going
> > into optimizing the serialization for latency yet. If you are willing to
> > help that would be great! A good place to start is to do an end-to-end
> > profiling of your benchmark script so we see where the time is spent.
> This
> > can be done conveniently with yep (https://github.com/fabianp/yep).
> > Running
> > it through the profiler and posting the image here would be a good
> starting
> > point, then we can see how we can best improve this.
> >
> > Let us know if you have any questions!
> >
> > Best,
> > Philipp.
> >
> > On Thu, Apr 25, 2019 at 7:34 PM Shawn Yang <shawn.ck.y...@gmail.com>
> > wrote:
> >
> > > Hi Wes,
> > > Maybe we can classify all dataset into two categories:
> > > 1. batch data: spark dataframe, pandas;
> > > 2. streaming data: flink DataStream<Row>. data is transferred row by
> row.
> > > For batch data, Arrow's  columnar binary IPC protocol already have
> > perfect
> > > support for batch data. Spark use arrow
> > > to efficiently transfer data between JVM and Python processes.
> > > For streaming data, maybe we need to  develop a new
> language-independent
> > > serialization protocol. The protocol is for
> > > use row by row, not in columnar way. Because in streaming, the data is
> > row
> > > by row by nature. Since every row in streaming
> > > have same schema, there maybe a way to reduce metadata size and parse
> > > overhead.
> > > Arrow already have perfect support for batch data, if it add support
> > > for streaming
> > > data, then it covers all data processing
> > > scenario.
> > >
> > > Regards
> > >
> > > On Thu, Apr 25, 2019 at 8:59 PM Wes McKinney <wesmck...@gmail.com>
> > wrote:
> > >
> > > > Since Apache Arrow is a "development platform for in-memory data" if
> > > > the columnar binary IPC protocol is not an appropriate solution for
> > > > this use case we might contemplate developing a language-independent
> > > > serialization protocol for "less-structured" datasets (e.g.
> addressing
> > > > the way that Ray is using UnionArray now) in a more efficient way.
> > > >
> > > > I would still like to understand in these particular benchmarks where
> > > > the performance issue is, whether in a flamegraph or something else.
> > > > Is data being copied that should not be?
> > > >
> > > > On Thu, Apr 25, 2019 at 6:57 AM Shawn Yang <shawn.ck.y...@gmail.com>
> > > > wrote:
> > > > >
> > > > > Hi Antoine,
> > > > > Thanks, I'll try PEP 574 for python worker to python worker data
> > > > transfer.
> > > > > But there is another question. In my scenario, the data is coming
> > from
> > > > java
> > > > > worker, and python worker is receiving streaming data from java. So
> > > > pickle5
> > > > > is a great solution for python to python data transfer. But form
> java
> > > to
> > > > > python, there is still need a framework such as arrow to enable
> > > > > cross-language serialization for realtime streaming data. From the
> > > > > benchmark, it seems arrow is not appropriate
> > > > > for  realtime streaming data. So is there a better solution for
> this?
> > > Or
> > > > I
> > > > > need use something such as flatbuffer to do my own?
> > > > >
> > > > > On Thu, Apr 25, 2019 at 5:57 PM Antoine Pitrou <anto...@python.org
> >
> > > > wrote:
> > > > >
> > > > > >
> > > > > > Hi Shawn,
> > > > > >
> > > > > > So it seems that RecordBatch serialization is able to avoid
> copies,
> > > > > > otherwise there's no benefit to using Arrow over pickle.
> > > > > >
> > > > > > Perhaps would you like to try and use pickle5 with out-of-band
> > > buffers
> > > > > > in your benchmark.  See https://pypi.org/project/pickle5/
> > > > > >
> > > > > > Regards
> > > > > >
> > > > > > Antoine.
> > > > > >
> > > > > >
> > > > > > Le 25/04/2019 à 11:23, Shawn Yang a écrit :
> > > > > > > Hi Antoine,
> > > > > > > Here are the images:
> > > > > > > 1. use |UnionArray| benchmark:
> > > > > > >
> > > > > >
> > > >
> > >
> >
> https://user-images.githubusercontent.com/12445254/56651475-aaaea300-66bb-11e9-8b4f-4632e96bd079.png
> > > > > > >
> > > > > >
> > > >
> > >
> >
> https://user-images.githubusercontent.com/12445254/56651484-b5693800-66bb-11e9-9b1f-d004212e6aac.png
> > > > > > >
> > > > > >
> > > >
> > >
> >
> https://user-images.githubusercontent.com/12445254/56651490-b8fcbf00-66bb-11e9-8f01-ef4919b6af8b.png
> > > > > > > 2. use |RecordBatch|
> > > > > > >
> > > > > >
> > > >
> > >
> >
> https://user-images.githubusercontent.com/12445254/56629689-c9437880-6680-11e9-8756-02acb47fdb30.png
> > > > > > >
> > > > > > > Regards
> > > > > > > Shawn.
> > > > > > >
> > > > > > > On Thu, Apr 25, 2019 at 4:03 PM Antoine Pitrou <
> > anto...@python.org
> > > > > > > <mailto:anto...@python.org>> wrote:
> > > > > > >
> > > > > > >
> > > > > > >     Hi Shawn,
> > > > > > >
> > > > > > >     Your images don't appear here.  It seems they weren't
> > attached
> > > to
> > > > > > your
> > > > > > >     e-mail?
> > > > > > >
> > > > > > >     About serialization: I am still working on PEP 574 (*),
> > which I
> > > > hope
> > > > > > >     will be integrated in Python 3.8.  The standalone "pickle5"
> > > > module is
> > > > > > >     also available as a backport.  Both Arrow and Numpy support
> > it.
> > > > You
> > > > > > may
> > > > > > >     get different pickle performance using it, especially on
> > large
> > > > data.
> > > > > > >
> > > > > > >     (*) https://www.python.org/dev/peps/pep-0574/
> > > > > > >
> > > > > > >     Regards
> > > > > > >
> > > > > > >     Antoine.
> > > > > > >
> > > > > > >
> > > > > > >     Le 25/04/2019 à 05:19, Shawn Yang a écrit :
> > > > > > >     >
> > > > > > >     >     Motivate
> > > > > > >     >
> > > > > > >     > We want to use arrow as a general data serialization
> > > framework
> > > > in
> > > > > > >     > distributed stream data processing. We are working on ray
> > > > > > >     > <https://github.com/ray-project/ray>, written in c++ in
> > > > low-level
> > > > > > and
> > > > > > >     > java/python in high-level. We want to transfer streaming
> > data
> > > > > > between
> > > > > > >     > java/python/c++ efficiently. Arrow is a great framework
> for
> > > > > > >     > cross-language data transfer. But it seems more
> appropriate
> > > for
> > > > > > batch
> > > > > > >     > columnar data. Is is appropriate for distributed stream
> > data
> > > > > > >     processing?
> > > > > > >     > If not, will there be more support in stream data
> > processing?
> > > > Or is
> > > > > > >     > there something I miss?
> > > > > > >     >
> > > > > > >     >
> > > > > > >     >     Benchmark
> > > > > > >     >
> > > > > > >     > 1. if use |UnionArray|
> > > > > > >     > image.png
> > > > > > >     > image.png
> > > > > > >     > image.png
> > > > > > >     > 2. If use |RecordBatch|, the batch size need to be
> greater
> > > than
> > > > > > 50~200
> > > > > > >     > to have e better deserialization performance than pickle.
> > But
> > > > the
> > > > > > >     > latency won't be acceptable in streaming.
> > > > > > >     > image.png
> > > > > > >     >
> > > > > > >     > Seems neither is an appropriate way or is there a better
> > way?
> > > > > > >     >
> > > > > > >     >
> > > > > > >     >     Benchmark code
> > > > > > >     >
> > > > > > >     > '''
> > > > > > >     > test arrow/pickle performance
> > > > > > >     > '''
> > > > > > >     > import pickle
> > > > > > >     > import pyarrow as pa
> > > > > > >     > import matplotlib.pyplot as plt
> > > > > > >     > import numpy as np
> > > > > > >     > import timeit
> > > > > > >     > import datetime
> > > > > > >     > import copy
> > > > > > >     > import os
> > > > > > >     > from collections import OrderedDict
> > > > > > >     > dir_path = os.path.dirname(os.path.realpath(__file__))
> > > > > > >     >
> > > > > > >     > def benchmark_ser(batches, number=10):
> > > > > > >     >     pickle_results = []
> > > > > > >     >     arrow_results = []
> > > > > > >     >     pickle_sizes = []
> > > > > > >     >     arrow_sizes = []
> > > > > > >     >     for obj_batch in batches:
> > > > > > >     >         pickle_serialize = timeit.timeit(
> > > > > > >     >             lambda: pickle.dumps(obj_batch,
> > > > > > >     protocol=pickle.HIGHEST_PROTOCOL),
> > > > > > >     >             number=number)
> > > > > > >     >         pickle_results.append(pickle_serialize)
> > > > > > >     >         pickle_sizes.append(len(pickle.dumps(obj_batch,
> > > > > > >     protocol=pickle.HIGHEST_PROTOCOL)))
> > > > > > >     >         arrow_serialize = timeit.timeit(
> > > > > > >     >             lambda: serialize_by_arrow_array(obj_batch),
> > > > > > >     number=number)
> > > > > > >     >         arrow_results.append(arrow_serialize)
> > > > > > >     >
> > > > > >  arrow_sizes.append(serialize_by_arrow_array(obj_batch).size)
> > > > > > >     >     return [pickle_results, arrow_results, pickle_sizes,
> > > > > > arrow_sizes]
> > > > > > >     >
> > > > > > >     > def benchmark_deser(batches, number=10):
> > > > > > >     >     pickle_results = []
> > > > > > >     >     arrow_results = []
> > > > > > >     >     for obj_batch in batches:
> > > > > > >     >         serialized_obj = pickle.dumps(obj_batch,
> > > > > > >     pickle.HIGHEST_PROTOCOL)
> > > > > > >     >         pickle_deserialize = timeit.timeit(lambda:
> > > > > > >     pickle.loads(serialized_obj),
> > > > > > >     >                                         number=number)
> > > > > > >     >         pickle_results.append(pickle_deserialize)
> > > > > > >     >         serialized_obj =
> > serialize_by_arrow_array(obj_batch)
> > > > > > >     >         arrow_deserialize = timeit.timeit(
> > > > > > >     >             lambda: pa.deserialize(serialized_obj),
> > > > number=number)
> > > > > > >     >         arrow_results.append(arrow_deserialize)
> > > > > > >     >     return [pickle_results, arrow_results]
> > > > > > >     >
> > > > > > >     > def serialize_by_arrow_array(obj_batch):
> > > > > > >     >     arrow_arrays = [pa.array(record) if not
> > > isinstance(record,
> > > > > > >     pa.Array) else record for record in obj_batch]
> > > > > > >     >     return pa.serialize(arrow_arrays).to_buffer()
> > > > > > >     >
> > > > > > >     >
> > > > > > >     > plot_dir = '{}/{}'.format(dir_path,
> > > > > > >     datetime.datetime.now().strftime('%m%d_%H%M_%S'))
> > > > > > >     > if not os.path.exists(plot_dir):
> > > > > > >     >     os.makedirs(plot_dir)
> > > > > > >     >
> > > > > > >     > def plot_time(pickle_times, arrow_times, batch_sizes,
> > title,
> > > > > > >     filename):
> > > > > > >     >     fig, ax = plt.subplots()
> > > > > > >     >     fig.set_size_inches(10, 8)
> > > > > > >     >
> > > > > > >     >     bar_width = 0.35
> > > > > > >     >     n_groups = len(batch_sizes)
> > > > > > >     >     index = np.arange(n_groups)
> > > > > > >     >     opacity = 0.6
> > > > > > >     >
> > > > > > >     >     plt.bar(index, pickle_times, bar_width,
> > > > > > >     >             alpha=opacity, color='r', label='Pickle')
> > > > > > >     >
> > > > > > >     >     plt.bar(index + bar_width, arrow_times, bar_width,
> > > > > > >     >             alpha=opacity, color='c', label='Arrow')
> > > > > > >     >
> > > > > > >     >     plt.title(title, fontweight='bold')
> > > > > > >     >     plt.ylabel('Time (seconds)', fontsize=10)
> > > > > > >     >     plt.xticks(index + bar_width / 2, batch_sizes,
> > > fontsize=10)
> > > > > > >     >     plt.legend(fontsize=10, bbox_to_anchor=(1, 1))
> > > > > > >     >     plt.tight_layout()
> > > > > > >     >     plt.yticks(fontsize=10)
> > > > > > >     >     plt.savefig(plot_dir + '/plot-' + filename + '.png',
> > > > > > format='png')
> > > > > > >     >
> > > > > > >     >
> > > > > > >     > def plot_size(pickle_sizes, arrow_sizes, batch_sizes,
> > title,
> > > > > > >     filename):
> > > > > > >     >     fig, ax = plt.subplots()
> > > > > > >     >     fig.set_size_inches(10, 8)
> > > > > > >     >
> > > > > > >     >     bar_width = 0.35
> > > > > > >     >     n_groups = len(batch_sizes)
> > > > > > >     >     index = np.arange(n_groups)
> > > > > > >     >     opacity = 0.6
> > > > > > >     >
> > > > > > >     >     plt.bar(index, pickle_sizes, bar_width,
> > > > > > >     >             alpha=opacity, color='r', label='Pickle')
> > > > > > >     >
> > > > > > >     >     plt.bar(index + bar_width, arrow_sizes, bar_width,
> > > > > > >     >             alpha=opacity, color='c', label='Arrow')
> > > > > > >     >
> > > > > > >     >     plt.title(title, fontweight='bold')
> > > > > > >     >     plt.ylabel('Space (Byte)', fontsize=10)
> > > > > > >     >     plt.xticks(index + bar_width / 2, batch_sizes,
> > > fontsize=10)
> > > > > > >     >     plt.legend(fontsize=10, bbox_to_anchor=(1, 1))
> > > > > > >     >     plt.tight_layout()
> > > > > > >     >     plt.yticks(fontsize=10)
> > > > > > >     >     plt.savefig(plot_dir + '/plot-' + filename + '.png',
> > > > > > format='png')
> > > > > > >     >
> > > > > > >     > def get_union_obj():
> > > > > > >     >     size = 200
> > > > > > >     >     str_array = pa.array(['str-' + str(i) for i in
> > > > range(size)])
> > > > > > >     >     int_array = pa.array(np.random.randn(size).tolist())
> > > > > > >     >     types = pa.array([0 for _ in range(size)]+[1 for _ in
> > > > > > >     range(size)], type=pa.int8())
> > > > > > >     >     offsets =
> pa.array(list(range(size))+list(range(size)),
> > > > > > >     type=pa.int32())
> > > > > > >     >     union_arr = pa.UnionArray.from_dense(types, offsets,
> > > > > > >     [str_array, int_array])
> > > > > > >     >     return union_arr
> > > > > > >     >
> > > > > > >     > test_objects_generater = [
> > > > > > >     >     lambda: np.random.randn(500),
> > > > > > >     >     lambda: np.random.randn(500).tolist(),
> > > > > > >     >     lambda: get_union_obj()
> > > > > > >     > ]
> > > > > > >     >
> > > > > > >     > titles = [
> > > > > > >     >     'numpy arrays',
> > > > > > >     >     'list of ints',
> > > > > > >     >     'union array of strings and ints'
> > > > > > >     > ]
> > > > > > >     >
> > > > > > >     > def plot_benchmark():
> > > > > > >     >     batch_sizes = list(OrderedDict.fromkeys(int(i) for i
> in
> > > > > > >     np.geomspace(1, 1000, num=25)))
> > > > > > >     >     for i in range(len(test_objects_generater)):
> > > > > > >     >         batches = [[test_objects_generater[i]() for _ in
> > > > > > >     range(batch_size)] for batch_size in batch_sizes]
> > > > > > >     >         ser_result = benchmark_ser(batches=batches)
> > > > > > >     >         plot_time(*ser_result[0:2], batch_sizes,
> > > > 'serialization: '
> > > > > > >     + titles[i], 'ser_time'+str(i))
> > > > > > >     >         plot_size(*ser_result[2:], batch_sizes,
> > > 'serialization
> > > > > > >     byte size: ' + titles[i], 'ser_size'+str(i))
> > > > > > >     >         deser = benchmark_deser(batches=batches)
> > > > > > >     >         plot_time(*deser, batch_sizes, 'deserialization:
> '
> > +
> > > > > > >     titles[i], 'deser_time-'+str(i))
> > > > > > >     >
> > > > > > >     >
> > > > > > >     > if __name__ == "__main__":
> > > > > > >     >     plot_benchmark()
> > > > > > >     >
> > > > > > >     >
> > > > > > >     >     Question
> > > > > > >     >
> > > > > > >     > So if i want to use arrow  as data serialization
> framework
> > in
> > > > > > >     > distributed stream data processing, what's the right way?
> > > > > > >     > Since streaming processing is a widespread scenario in
> > > > > > >     data processing,
> > > > > > >     > framework such as flink, spark structural streaming is
> > > becoming
> > > > > > >     more and
> > > > > > >     > more popular. Is there a possibility to add special
> support
> > > > > > >     > for streaming processing in arrow, such that we can also
> > > > benefit
> > > > > > from
> > > > > > >     > cross-language and efficient memory layout.
> > > > > > >     >
> > > > > > >     >
> > > > > > >     >
> > > > > > >     >
> > > > > > >
> > > > > >
> > > >
> > >
> >
>

Reply via email to