Hi Antoine,
Here are the images:
1. use UnionArray benchmark:
https://user-images.githubusercontent.com/12445254/56651475-aaaea300-66bb-11e9-8b4f-4632e96bd079.png
https://user-images.githubusercontent.com/12445254/56651484-b5693800-66bb-11e9-9b1f-d004212e6aac.png
https://user-images.githubusercontent.com/12445254/56651490-b8fcbf00-66bb-11e9-8f01-ef4919b6af8b.png
2. use RecordBatch
https://user-images.githubusercontent.com/12445254/56629689-c9437880-6680-11e9-8756-02acb47fdb30.png

Regards
Shawn.

On Thu, Apr 25, 2019 at 4:03 PM Antoine Pitrou <anto...@python.org> wrote:

>
> Hi Shawn,
>
> Your images don't appear here.  It seems they weren't attached to your
> e-mail?
>
> About serialization: I am still working on PEP 574 (*), which I hope
> will be integrated in Python 3.8.  The standalone "pickle5" module is
> also available as a backport.  Both Arrow and Numpy support it.  You may
> get different pickle performance using it, especially on large data.
>
> (*) https://www.python.org/dev/peps/pep-0574/
>
> Regards
>
> Antoine.
>
>
> Le 25/04/2019 à 05:19, Shawn Yang a écrit :
> >
> >     Motivate
> >
> > We want to use arrow as a general data serialization framework in
> > distributed stream data processing. We are working on ray
> > <https://github.com/ray-project/ray>, written in c++ in low-level and
> > java/python in high-level. We want to transfer streaming data between
> > java/python/c++ efficiently. Arrow is a great framework for
> > cross-language data transfer. But it seems more appropriate for batch
> > columnar data. Is is appropriate for distributed stream data processing?
> > If not, will there be more support in stream data processing? Or is
> > there something I miss?
> >
> >
> >     Benchmark
> >
> > 1. if use |UnionArray|
> > image.png
> > image.png
> > image.png
> > 2. If use |RecordBatch|, the batch size need to be greater than 50~200
> > to have e better deserialization performance than pickle. But the
> > latency won't be acceptable in streaming.
> > image.png
> >
> > Seems neither is an appropriate way or is there a better way?
> >
> >
> >     Benchmark code
> >
> > '''
> > test arrow/pickle performance
> > '''
> > import pickle
> > import pyarrow as pa
> > import matplotlib.pyplot as plt
> > import numpy as np
> > import timeit
> > import datetime
> > import copy
> > import os
> > from collections import OrderedDict
> > dir_path = os.path.dirname(os.path.realpath(__file__))
> >
> > def benchmark_ser(batches, number=10):
> >     pickle_results = []
> >     arrow_results = []
> >     pickle_sizes = []
> >     arrow_sizes = []
> >     for obj_batch in batches:
> >         pickle_serialize = timeit.timeit(
> >             lambda: pickle.dumps(obj_batch,
> protocol=pickle.HIGHEST_PROTOCOL),
> >             number=number)
> >         pickle_results.append(pickle_serialize)
> >         pickle_sizes.append(len(pickle.dumps(obj_batch,
> protocol=pickle.HIGHEST_PROTOCOL)))
> >         arrow_serialize = timeit.timeit(
> >             lambda: serialize_by_arrow_array(obj_batch), number=number)
> >         arrow_results.append(arrow_serialize)
> >         arrow_sizes.append(serialize_by_arrow_array(obj_batch).size)
> >     return [pickle_results, arrow_results, pickle_sizes, arrow_sizes]
> >
> > def benchmark_deser(batches, number=10):
> >     pickle_results = []
> >     arrow_results = []
> >     for obj_batch in batches:
> >         serialized_obj = pickle.dumps(obj_batch, pickle.HIGHEST_PROTOCOL)
> >         pickle_deserialize = timeit.timeit(lambda:
> pickle.loads(serialized_obj),
> >                                         number=number)
> >         pickle_results.append(pickle_deserialize)
> >         serialized_obj = serialize_by_arrow_array(obj_batch)
> >         arrow_deserialize = timeit.timeit(
> >             lambda: pa.deserialize(serialized_obj), number=number)
> >         arrow_results.append(arrow_deserialize)
> >     return [pickle_results, arrow_results]
> >
> > def serialize_by_arrow_array(obj_batch):
> >     arrow_arrays = [pa.array(record) if not isinstance(record, pa.Array)
> else record for record in obj_batch]
> >     return pa.serialize(arrow_arrays).to_buffer()
> >
> >
> > plot_dir = '{}/{}'.format(dir_path,
> datetime.datetime.now().strftime('%m%d_%H%M_%S'))
> > if not os.path.exists(plot_dir):
> >     os.makedirs(plot_dir)
> >
> > def plot_time(pickle_times, arrow_times, batch_sizes, title, filename):
> >     fig, ax = plt.subplots()
> >     fig.set_size_inches(10, 8)
> >
> >     bar_width = 0.35
> >     n_groups = len(batch_sizes)
> >     index = np.arange(n_groups)
> >     opacity = 0.6
> >
> >     plt.bar(index, pickle_times, bar_width,
> >             alpha=opacity, color='r', label='Pickle')
> >
> >     plt.bar(index + bar_width, arrow_times, bar_width,
> >             alpha=opacity, color='c', label='Arrow')
> >
> >     plt.title(title, fontweight='bold')
> >     plt.ylabel('Time (seconds)', fontsize=10)
> >     plt.xticks(index + bar_width / 2, batch_sizes, fontsize=10)
> >     plt.legend(fontsize=10, bbox_to_anchor=(1, 1))
> >     plt.tight_layout()
> >     plt.yticks(fontsize=10)
> >     plt.savefig(plot_dir + '/plot-' + filename + '.png', format='png')
> >
> >
> > def plot_size(pickle_sizes, arrow_sizes, batch_sizes, title, filename):
> >     fig, ax = plt.subplots()
> >     fig.set_size_inches(10, 8)
> >
> >     bar_width = 0.35
> >     n_groups = len(batch_sizes)
> >     index = np.arange(n_groups)
> >     opacity = 0.6
> >
> >     plt.bar(index, pickle_sizes, bar_width,
> >             alpha=opacity, color='r', label='Pickle')
> >
> >     plt.bar(index + bar_width, arrow_sizes, bar_width,
> >             alpha=opacity, color='c', label='Arrow')
> >
> >     plt.title(title, fontweight='bold')
> >     plt.ylabel('Space (Byte)', fontsize=10)
> >     plt.xticks(index + bar_width / 2, batch_sizes, fontsize=10)
> >     plt.legend(fontsize=10, bbox_to_anchor=(1, 1))
> >     plt.tight_layout()
> >     plt.yticks(fontsize=10)
> >     plt.savefig(plot_dir + '/plot-' + filename + '.png', format='png')
> >
> > def get_union_obj():
> >     size = 200
> >     str_array = pa.array(['str-' + str(i) for i in range(size)])
> >     int_array = pa.array(np.random.randn(size).tolist())
> >     types = pa.array([0 for _ in range(size)]+[1 for _ in range(size)],
> type=pa.int8())
> >     offsets = pa.array(list(range(size))+list(range(size)),
> type=pa.int32())
> >     union_arr = pa.UnionArray.from_dense(types, offsets, [str_array,
> int_array])
> >     return union_arr
> >
> > test_objects_generater = [
> >     lambda: np.random.randn(500),
> >     lambda: np.random.randn(500).tolist(),
> >     lambda: get_union_obj()
> > ]
> >
> > titles = [
> >     'numpy arrays',
> >     'list of ints',
> >     'union array of strings and ints'
> > ]
> >
> > def plot_benchmark():
> >     batch_sizes = list(OrderedDict.fromkeys(int(i) for i in
> np.geomspace(1, 1000, num=25)))
> >     for i in range(len(test_objects_generater)):
> >         batches = [[test_objects_generater[i]() for _ in
> range(batch_size)] for batch_size in batch_sizes]
> >         ser_result = benchmark_ser(batches=batches)
> >         plot_time(*ser_result[0:2], batch_sizes, 'serialization: ' +
> titles[i], 'ser_time'+str(i))
> >         plot_size(*ser_result[2:], batch_sizes, 'serialization byte
> size: ' + titles[i], 'ser_size'+str(i))
> >         deser = benchmark_deser(batches=batches)
> >         plot_time(*deser, batch_sizes, 'deserialization: ' + titles[i],
> 'deser_time-'+str(i))
> >
> >
> > if __name__ == "__main__":
> >     plot_benchmark()
> >
> >
> >     Question
> >
> > So if i want to use arrow  as data serialization framework in
> > distributed stream data processing, what's the right way?
> > Since streaming processing is a widespread scenario in data processing,
> > framework such as flink, spark structural streaming is becoming more and
> > more popular. Is there a possibility to add special support
> > for streaming processing in arrow, such that we can also benefit from
> > cross-language and efficient memory layout.
> >
> >
> >
> >
>

Reply via email to