Hi Andrea, The following workaround works for me (but maybe there are other alternatives too):
- downloaded spark spark-2.3.1-bin-hadoop2.7 - renamed the zeppelin-env.sh.template to zeppelin-env.sh - appended the following line in the above file: export SPARK_HOME=../../spark-2.3.1-bin-hadoop2.7/ Hope this helps, *// **Adamantios Corais* On Thu, Jul 5, 2018 at 1:51 PM, Andrea Santurbano <sant...@gmail.com> wrote: > Thanks Jeff, > is there a workaround in order to make it work now? > > Il giorno gio 5 lug 2018 alle ore 12:42 Jeff Zhang <zjf...@gmail.com> ha > scritto: > >> >> This is due to hadoop version used in embedded spark is 2.3 which is too >> lower. I created https://issues.apache.org/jira/browse/ZEPPELIN-3586 for >> this issue. Suppose it will be fixed in o.8.1 >> >> >> >> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 下午3:35写道: >> >>> I agree that is not for production, but if want to do a simple blog post >>> (and that's what I'm doing) I think it's a well suited solution. >>> Is it possible to fix this? >>> Thanks >>> Andrea >>> >>> Il giorno gio 5 lug 2018 alle ore 02:29 Jeff Zhang <zjf...@gmail.com> >>> ha scritto: >>> >>>> >>>> This might be due to the embedded spark version. I would recommend you >>>> to specify SPARK_HOME instead of using the embedded spark, the embedded >>>> spark is not for production. >>>> >>>> >>>> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 上午12:07写道: >>>> >>>>> I have the same issue... >>>>> Il giorno mar 3 lug 2018 alle 23:18 Adamantios Corais < >>>>> adamantios.cor...@gmail.com> ha scritto: >>>>> >>>>>> Hi Jeff, I am using the embedded Spark. >>>>>> >>>>>> FYI, this is how I start the dockerized (yet old) version of Zeppelin >>>>>> that works as expected. >>>>>> >>>>>> #!/bin/bash >>>>>>> docker run --rm \ >>>>>>> --name zepelin \ >>>>>>> -p 127.0.0.1:9090:8080 \ >>>>>>> -p 127.0.0.1:5050:4040 \ >>>>>>> -v $(pwd):/zeppelin/notebook \ >>>>>>> apache/zeppelin:0.7.3 >>>>>> >>>>>> >>>>>> And this is how I start the binarized (yet stable) version of >>>>>> Zeppelin that is supposed to work (but it doesn't). >>>>>> >>>>>> #!/bin/bash >>>>>>> wget http://www-eu.apache.org/dist/zeppelin/zeppelin-0.8.0/ >>>>>>> zeppelin-0.8.0-bin-all.tgz >>>>>>> tar zxvf zeppelin-0.8.0-bin-all.tgz >>>>>>> cd ./zeppelin-0.8.0-bin-all/ >>>>>>> bash ./bin/zeppelin.sh >>>>>> >>>>>> >>>>>> Thanks. >>>>>> >>>>>> >>>>>> >>>>>> >>>>>> *// **Adamantios Corais* >>>>>> >>>>>> On Tue, Jul 3, 2018 at 2:24 AM, Jeff Zhang <zjf...@gmail.com> wrote: >>>>>> >>>>>>> >>>>>>> Do you use the embeded spark or specify SPARK_HOME ? If you set >>>>>>> SPARK_HOME, which spark version and hadoop version do you use ? >>>>>>> >>>>>>> >>>>>>> >>>>>>> Adamantios Corais <adamantios.cor...@gmail.com>于2018年7月3日周二 >>>>>>> 上午12:32写道: >>>>>>> >>>>>>>> Hi, >>>>>>>> >>>>>>>> I have downloaded the latest binary package of Zeppelin (ver. >>>>>>>> 0.8.0), extracted, and started as follows: `./bin/zeppelin.sh` >>>>>>>> >>>>>>>> Next, I tried a very simple example: >>>>>>>> >>>>>>>> `spark.read.parquet("./bin/userdata1.parquet").show()` >>>>>>>> >>>>>>>> Which unfortunately returns the following error. Note that the same >>>>>>>> example works fine with the official docker version of Zeppelin (ver. >>>>>>>> 0.7.3). Any ideas? >>>>>>>> >>>>>>>> org.apache.spark.SparkException: Job aborted due to stage failure: >>>>>>>>> Task 0 in stage 7.0 failed 1 times, most recent failure: Lost task >>>>>>>>> 0.0 in >>>>>>>>> stage 7.0 (TID 7, localhost, executor driver): >>>>>>>>> java.lang.NoSuchMethodError: >>>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics. >>>>>>>>> getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$ >>>>>>>>> Statistics$StatisticsData; >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$ >>>>>>>>> anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$ >>>>>>>>> anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>> at scala.collection.TraversableLike$$anonfun$map$ >>>>>>>>> 1.apply(TraversableLike.scala:234) >>>>>>>>> at scala.collection.TraversableLike$$anonfun$map$ >>>>>>>>> 1.apply(TraversableLike.scala:234) >>>>>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:893) >>>>>>>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) >>>>>>>>> at scala.collection.IterableLike$class.foreach(IterableLike. >>>>>>>>> scala:72) >>>>>>>>> at scala.collection.AbstractIterable.foreach(Iterable.scala:54) >>>>>>>>> at scala.collection.TraversableLike$class.map( >>>>>>>>> TraversableLike.scala:234) >>>>>>>>> at scala.collection.AbstractTraversable.map(Traversable.scala:104) >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1. >>>>>>>>> apply$mcJ$sp(SparkHadoopUtil.scala:149) >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil. >>>>>>>>> getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150) >>>>>>>>> at org.apache.spark.sql.execution.datasources. >>>>>>>>> FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78) >>>>>>>>> at org.apache.spark.sql.execution.datasources.FileScanRDD.compute( >>>>>>>>> FileScanRDD.scala:71) >>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute( >>>>>>>>> MapPartitionsRDD.scala:38) >>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute( >>>>>>>>> MapPartitionsRDD.scala:38) >>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. >>>>>>>>> scala:87) >>>>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:108) >>>>>>>>> at org.apache.spark.executor.Executor$TaskRunner.run( >>>>>>>>> Executor.scala:335) >>>>>>>>> at java.util.concurrent.ThreadPoolExecutor.runWorker( >>>>>>>>> ThreadPoolExecutor.java:1149) >>>>>>>>> at java.util.concurrent.ThreadPoolExecutor$Worker.run( >>>>>>>>> ThreadPoolExecutor.java:624) >>>>>>>>> at java.lang.Thread.run(Thread.java:748) >>>>>>>>> Driver stacktrace: >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$ >>>>>>>>> scheduler$DAGScheduler$$failJobAndIndependentStages( >>>>>>>>> DAGScheduler.scala:1499) >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler$$anonfun$ >>>>>>>>> abortStage$1.apply(DAGScheduler.scala:1487) >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler$$anonfun$ >>>>>>>>> abortStage$1.apply(DAGScheduler.scala:1486) >>>>>>>>> at scala.collection.mutable.ResizableArray$class.foreach( >>>>>>>>> ResizableArray.scala:59) >>>>>>>>> at scala.collection.mutable.ArrayBuffer.foreach( >>>>>>>>> ArrayBuffer.scala:48) >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler.abortStage( >>>>>>>>> DAGScheduler.scala:1486) >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler$$anonfun$ >>>>>>>>> handleTaskSetFailed$1.apply(DAGScheduler.scala:814) >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler$$anonfun$ >>>>>>>>> handleTaskSetFailed$1.apply(DAGScheduler.scala:814) >>>>>>>>> at scala.Option.foreach(Option.scala:257) >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed( >>>>>>>>> DAGScheduler.scala:814) >>>>>>>>> at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. >>>>>>>>> doOnReceive(DAGScheduler.scala:1714) >>>>>>>>> at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. >>>>>>>>> onReceive(DAGScheduler.scala:1669) >>>>>>>>> at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. >>>>>>>>> onReceive(DAGScheduler.scala:1658) >>>>>>>>> at org.apache.spark.util.EventLoop$$anon$1.run( >>>>>>>>> EventLoop.scala:48) >>>>>>>>> at org.apache.spark.scheduler.DAGScheduler.runJob( >>>>>>>>> DAGScheduler.scala:630) >>>>>>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022) >>>>>>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043) >>>>>>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062) >>>>>>>>> at org.apache.spark.sql.execution.SparkPlan. >>>>>>>>> executeTake(SparkPlan.scala:336) >>>>>>>>> at org.apache.spark.sql.execution.CollectLimitExec. >>>>>>>>> executeCollect(limit.scala:38) >>>>>>>>> at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$ >>>>>>>>> collectFromPlan(Dataset.scala:2853) >>>>>>>>> at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset. >>>>>>>>> scala:2153) >>>>>>>>> at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset. >>>>>>>>> scala:2153) >>>>>>>>> at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset. >>>>>>>>> scala:2837) >>>>>>>>> at org.apache.spark.sql.execution.SQLExecution$. >>>>>>>>> withNewExecutionId(SQLExecution.scala:65) >>>>>>>>> at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836) >>>>>>>>> at org.apache.spark.sql.Dataset.head(Dataset.scala:2153) >>>>>>>>> at org.apache.spark.sql.Dataset.take(Dataset.scala:2366) >>>>>>>>> at org.apache.spark.sql.Dataset.showString(Dataset.scala:245) >>>>>>>>> at org.apache.spark.sql.Dataset.show(Dataset.scala:644) >>>>>>>>> at org.apache.spark.sql.Dataset.show(Dataset.scala:603) >>>>>>>>> at org.apache.spark.sql.Dataset.show(Dataset.scala:612) >>>>>>>>> ... 52 elided >>>>>>>>> Caused by: java.lang.NoSuchMethodError: org.apache.hadoop.fs. >>>>>>>>> FileSystem$Statistics.getThreadStatistics()Lorg/ >>>>>>>>> apache/hadoop/fs/FileSystem$Statistics$StatisticsData; >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$ >>>>>>>>> anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$ >>>>>>>>> anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>> at scala.collection.TraversableLike$$anonfun$map$ >>>>>>>>> 1.apply(TraversableLike.scala:234) >>>>>>>>> at scala.collection.TraversableLike$$anonfun$map$ >>>>>>>>> 1.apply(TraversableLike.scala:234) >>>>>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:893) >>>>>>>>> at scala.collection.AbstractIterator.foreach( >>>>>>>>> Iterator.scala:1336) >>>>>>>>> at scala.collection.IterableLike$class.foreach(IterableLike. >>>>>>>>> scala:72) >>>>>>>>> at scala.collection.AbstractIterable.foreach(Iterable.scala:54) >>>>>>>>> at scala.collection.TraversableLike$class.map( >>>>>>>>> TraversableLike.scala:234) >>>>>>>>> at scala.collection.AbstractTraversable.map( >>>>>>>>> Traversable.scala:104) >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1. >>>>>>>>> apply$mcJ$sp(SparkHadoopUtil.scala:149) >>>>>>>>> at org.apache.spark.deploy.SparkHadoopUtil. >>>>>>>>> getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150) >>>>>>>>> at org.apache.spark.sql.execution.datasources. >>>>>>>>> FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78) >>>>>>>>> at org.apache.spark.sql.execution.datasources. >>>>>>>>> FileScanRDD.compute(FileScanRDD.scala:71) >>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD. >>>>>>>>> scala:323) >>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute( >>>>>>>>> MapPartitionsRDD.scala:38) >>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD. >>>>>>>>> scala:323) >>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>> at org.apache.spark.rdd.MapPartitionsRDD.compute( >>>>>>>>> MapPartitionsRDD.scala:38) >>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD. >>>>>>>>> scala:323) >>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask. >>>>>>>>> scala:87) >>>>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:108) >>>>>>>>> at org.apache.spark.executor.Executor$TaskRunner.run( >>>>>>>>> Executor.scala:335) >>>>>>>>> ... 3 more >>>>>>>> >>>>>>>> >>>>>>>> >>>>>>