This is due to hadoop version used in embedded spark is 2.3 which is too
lower. I created https://issues.apache.org/jira/browse/ZEPPELIN-3586 for
this issue. Suppose it will be fixed in o.8.1



Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 下午3:35写道:

> I agree that is not for production, but if want to do a simple blog post
> (and that's what I'm doing) I think it's a well suited solution.
> Is it possible to fix this?
> Thanks
> Andrea
>
> Il giorno gio 5 lug 2018 alle ore 02:29 Jeff Zhang <zjf...@gmail.com> ha
> scritto:
>
>>
>> This might be due to the embedded spark version.  I would recommend you
>> to specify SPARK_HOME instead of using the embedded spark, the embedded
>> spark is not for production.
>>
>>
>> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 上午12:07写道:
>>
>>> I have the same issue...
>>> Il giorno mar 3 lug 2018 alle 23:18 Adamantios Corais <
>>> adamantios.cor...@gmail.com> ha scritto:
>>>
>>>> Hi Jeff, I am using the embedded Spark.
>>>>
>>>> FYI, this is how I start the dockerized (yet old) version of Zeppelin
>>>> that works as expected.
>>>>
>>>> #!/bin/bash
>>>>> docker run --rm \
>>>>> --name zepelin \
>>>>> -p 127.0.0.1:9090:8080 \
>>>>> -p 127.0.0.1:5050:4040 \
>>>>> -v $(pwd):/zeppelin/notebook \
>>>>> apache/zeppelin:0.7.3
>>>>
>>>>
>>>> And this is how I start the binarized (yet stable) version of Zeppelin that
>>>> is supposed to work (but it doesn't).
>>>>
>>>> #!/bin/bash
>>>>> wget
>>>>> http://www-eu.apache.org/dist/zeppelin/zeppelin-0.8.0/zeppelin-0.8.0-bin-all.tgz
>>>>> tar  zxvf zeppelin-0.8.0-bin-all.tgz
>>>>> cd   ./zeppelin-0.8.0-bin-all/
>>>>> bash ./bin/zeppelin.sh
>>>>
>>>>
>>>> Thanks.
>>>>
>>>>
>>>>
>>>>
>>>> *// **Adamantios Corais*
>>>>
>>>> On Tue, Jul 3, 2018 at 2:24 AM, Jeff Zhang <zjf...@gmail.com> wrote:
>>>>
>>>>>
>>>>> Do you use the embeded spark or specify SPARK_HOME ? If you set
>>>>> SPARK_HOME, which spark version and hadoop version do you use ?
>>>>>
>>>>>
>>>>>
>>>>> Adamantios Corais <adamantios.cor...@gmail.com>于2018年7月3日周二 上午12:32写道:
>>>>>
>>>>>> Hi,
>>>>>>
>>>>>> I have downloaded the latest binary package of Zeppelin (ver. 0.8.0),
>>>>>> extracted, and started as follows: `./bin/zeppelin.sh`
>>>>>>
>>>>>> Next, I tried a very simple example:
>>>>>>
>>>>>> `spark.read.parquet("./bin/userdata1.parquet").show()`
>>>>>>
>>>>>> Which unfortunately returns the following error. Note that the same
>>>>>> example works fine with the official docker version of Zeppelin (ver.
>>>>>> 0.7.3). Any ideas?
>>>>>>
>>>>>> org.apache.spark.SparkException: Job aborted due to stage failure:
>>>>>>> Task 0 in stage 7.0 failed 1 times, most recent failure: Lost task 0.0 
>>>>>>> in
>>>>>>> stage 7.0 (TID 7, localhost, executor driver): 
>>>>>>> java.lang.NoSuchMethodError:
>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData;
>>>>>>> at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>> at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>> at
>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>> at
>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>>>>>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
>>>>>>> at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>>>>>>> at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>>>>>>> at
>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>>>>>>> at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>>>>>>> at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149)
>>>>>>> at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150)
>>>>>>> at
>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78)
>>>>>>> at
>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71)
>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>> at
>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>> at
>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:108)
>>>>>>> at
>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
>>>>>>> at
>>>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>>>>>>> at
>>>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>>>>>>> at java.lang.Thread.run(Thread.java:748)
>>>>>>> Driver stacktrace:
>>>>>>>   at org.apache.spark.scheduler.DAGScheduler.org
>>>>>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
>>>>>>>   at
>>>>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>>>>   at
>>>>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
>>>>>>>   at scala.Option.foreach(Option.scala:257)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
>>>>>>>   at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
>>>>>>>   at org.apache.spark.sql.Dataset.org
>>>>>>> $apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
>>>>>>>   at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836)
>>>>>>>   at org.apache.spark.sql.Dataset.head(Dataset.scala:2153)
>>>>>>>   at org.apache.spark.sql.Dataset.take(Dataset.scala:2366)
>>>>>>>   at org.apache.spark.sql.Dataset.showString(Dataset.scala:245)
>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:644)
>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:603)
>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:612)
>>>>>>>   ... 52 elided
>>>>>>> Caused by: java.lang.NoSuchMethodError:
>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData;
>>>>>>>   at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>   at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>   at
>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>   at
>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>   at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>>>>>>>   at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
>>>>>>>   at
>>>>>>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>>>>>>>   at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>>>>>>>   at
>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>>>>>>>   at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>>>>>>>   at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149)
>>>>>>>   at
>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78)
>>>>>>>   at
>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71)
>>>>>>>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>   at
>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>   at
>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>   at
>>>>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>>>>   at org.apache.spark.scheduler.Task.run(Task.scala:108)
>>>>>>>   at
>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
>>>>>>>   ... 3 more
>>>>>>
>>>>>>
>>>>>>
>>>>

Reply via email to