I've searches low and high for answers to this problem, but I believe they 
answers out there don't have regular predictable keywords to find them.
SA 3.0.1
Redhat FC2

In short, when I run sa-learn --dump, I see a slew of binary tokens.  I've 
isolated the problem by creating a test directory, pointing sa-dump to it via 
--dbpath, and creating a new db.  Even after loading only a single spam 
message, my db dump still shows all binary/useless tokens.  It seems to be like 
sa-learn and my berkeley db version don't jive, perhaps?  I don't seem to be 
getting any bayesian matching out of this in spamassassin, so I'm concluding it 
is a real issue and not just aesthetic.  Sample output (mind you after loading 
only ONE 32-line/304-word spam message).

(actual output 166 lines long.  truncated...):

# sa-learn --dbpath /tmp/bayes-testing/ --dump
0.000          0          3          0  non-token data: bayes db version
0.000          0          1          0  non-token data: nspam
0.000          0          0          0  non-token data: nham
0.000          0        156          0  non-token data: ntokens
0.000          0 1098394307          0  non-token data: oldest atime
0.000          0 1098394307          0  non-token data: newest atime
0.000          0          0          0  non-token data: last journal sync atime
0.000          0          0          0  non-token data: last expiry atime
0.000          0          0          0  non-token data: last expire atime delta
0.000          0          0          0  non-token data: last expire reduction 
count
0.500          1          0 1098394307  146128b352
0.500          1          0 1098394307  4d8914a48a
0.500          1          0 1098394307  9b1dba02fa
0.500          1          0 1098394307  c6e33f2228
0.500          1          0 1098394307  e565aece1c
0.500          1          0 1098394307  e8778e7918
0.500          1          0 1098394307  0c90d22ab4
0.500          1          0 1098394307  948257a188
0.500          1          0 1098394307  e53979c58e
0.500          1          0 1098394307  da0dafd155
0.500          1          0 1098394307  6152cff59d
0.500          1          0 1098394307  801ee7924b

Thanks in advance

Reply via email to