Got it, thanks Jay 

-- 
Ian Friedman


On Monday, August 26, 2013 at 2:37 PM, Jay Kreps wrote:

> Yes exactly.
> 
> Lowering queuedchunks.max shouldn't help if the problem is what I
> described. That options controls how many chunks the consumer has ready in
> memory for processing. But we are hypothesisizing that your problem is
> actually that the individual chunks are just too large leading to the
> consumer spending a long time processing from one partition before it gets
> the next chunk.
> 
> -Jay
> 
> 
> On Mon, Aug 26, 2013 at 11:18 AM, Ian Friedman <i...@flurry.com 
> (mailto:i...@flurry.com)> wrote:
> 
> > Just to make sure i have this right, on the producer side we'd set
> > max.message.size and then on the consumer side we'd set fetch.size? I
> > admittedly didn't research how all the tuning options would affect us,
> > thank you for the info. Would queuedchunks.max have any effect?
> > 
> > --
> > Ian Friedman
> > 
> > 
> > On Monday, August 26, 2013 at 1:26 PM, Jay Kreps wrote:
> > 
> > > Yeah it is always equal to the fetch size. The fetch size needs to be at
> > > least equal to the max message size you have allowed on the server,
> > > 
> > 
> > though.
> > > 
> > > -Jay
> > > 
> > > 
> > > On Sun, Aug 25, 2013 at 10:00 PM, Ian Friedman <i...@flurry.com 
> > > (mailto:i...@flurry.com) (mailto:
> > i...@flurry.com (mailto:i...@flurry.com))> wrote:
> > > 
> > > > Jay - is there any way to control the size of the interleaved chunks?
> > The
> > > > performance hit would likely be negligible for us at the moment.
> > > > 
> > > > --
> > > > Ian Friedman
> > > > 
> > > > 
> > > > On Sunday, August 25, 2013 at 3:11 PM, Jay Kreps wrote:
> > > > 
> > > > > I'm still a little confused by your description of the problem. It
> > might
> > > > be
> > > > > easier to understand if you listed out the exact things you have
> > > > 
> > > > 
> > > > measured,
> > > > > what you saw, and what you expected to see.
> > > > > 
> > > > > Since you mentioned the consumer I can give a little info on how that
> > > > > works. The consumer consumes from all the partitions it owns
> > > > > simultaneously. The behavior is that we interleve fetched data
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > chunks of
> > > > > messages from each partition the consumer is processing. The chunk
> > > > 
> > > 
> > 
> > size
> > > > > 
> > > > 
> > > > 
> > > > is
> > > > > controlled by the fetch size set in the consumer. So the behavior you
> > > > 
> > > > 
> > > > would
> > > > > expect is that you would get a bunch of messages from one partition
> > > > > followed by a bunch from another partition. The reason for doing this
> > > > > instead of, say, interleving individual messages is that it is a big
> > > > > performance boost--making every message an entry in a blocking queue
> > > > > 
> > > > 
> > > > 
> > > > gives
> > > > > a 5x performance hit in high-throughput cases. Perhaps this
> > > > 
> > > > 
> > > 
> > 
> > interleaving
> > > > 
> > > > is
> > > > > the problem?
> > > > > 
> > > > > -Jay
> > > > > 
> > > > > 
> > > > > On Sun, Aug 25, 2013 at 10:22 AM, Ian Friedman <i...@flurry.com 
> > > > > (mailto:i...@flurry.com)(mailto:
> > i...@flurry.com (mailto:i...@flurry.com)) (mailto:
> > > > i...@flurry.com (mailto:i...@flurry.com))> wrote:
> > > > > 
> > > > > > Sorry I reread what I've written so far and found that it doesn't
> > state
> > > > > > the actual problem very well. Let me clarify once again:
> > > > > > 
> > > > > > The problem we're trying to solve is that we can't let messages go
> > for
> > > > > > unbounded amounts of time without getting processed, and it seems
> > > > > 
> > > > 
> > > 
> > 
> > that
> > > > > > something about what we're doing (which I suspect is the fact that
> > > > > > consumers own several partitions but only consume from one of them
> > > > > > 
> > > > > 
> > > > 
> > > 
> > 
> > at a
> > > > > > time until it's caught up) is causing a small number of them to sit
> > > > > 
> > > > 
> > > > 
> > > > around
> > > > > > for hours and hours. This is despite some consumers idling due to
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > being
> > > > > > fully caught up on the partitions they own. We've found that
> > > > > 
> > > > 
> > > > 
> > > > requeueing the
> > > > > > oldest messages (consumers ignore messages that have already been
> > > > > > processed) is fairly effective in getting them to go away, but I'm
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > looking
> > > > > > for a more stable solution.
> > > > > > 
> > > > > > --
> > > > > > Ian Friedman
> > > > > > 
> > > > > > 
> > > > > > On Sunday, August 25, 2013 at 1:15 PM, Ian Friedman wrote:
> > > > > > 
> > > > > > > When I said "some messages take longer than others" that may have
> > > > been
> > > > > > misleading. What I meant there is that the performance of the
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > entire
> > > > > > application is inconsistent, mostly due to pressure from other
> > > > > 
> > > > 
> > > > 
> > > > applications
> > > > > > (mapreduce) on our HBase and MySQL backends. On top of that, some
> > > > > 
> > > > 
> > > > 
> > > > messages
> > > > > > just contain more data. Now I suppose what you're suggesting is
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > that I
> > > > > > segment my messages by the average or expected time it takes the
> > > > > 
> > > > 
> > > > 
> > > > payloads
> > > > > > to process, but I suspect what will happen if I do that is I will
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > have
> > > > > > several consumers doing nothing most of the time, and the rest of
> > > > > 
> > > > 
> > > 
> > 
> > them
> > > > > > backlogged inconsistently the same way they are now. The problem
> > > > > 
> > > > 
> > > 
> > 
> > isn't
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > so
> > > > > > much the size of the payloads but the fact that we're seeing some
> > > > > 
> > > > 
> > > > 
> > > > messages,
> > > > > > which i suspect are in partitions with lots of longer running
> > > > > 
> > > > 
> > > > 
> > > > processing
> > > > > > tasks, sit around for hours without getting consumed. That's what
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > I'm
> > > > > > trying to solve.
> > > > > > > 
> > > > > > > Is there any way to "add more consumers" without actually adding
> > more
> > > > > > consumer JVM processes? We've hit something of a saturation point
> > > > > 
> > > > 
> > > 
> > 
> > for
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > our
> > > > > > MySQL database. Is this maybe where having multiple consumer
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > threads
> > > > > 
> > > > 
> > > > 
> > > > would
> > > > > > help? If so, given that I have a singular shared processing queue
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > in
> > > > > 
> > > > 
> > > > 
> > > > each
> > > > > > consumer, how would I leverage that to solve this problem?
> > > > > > > 
> > > > > > > --
> > > > > > > Ian Friedman
> > > > > > > 
> > > > > > > 
> > > > > > > On Sunday, August 25, 2013 at 12:13 PM, Mark wrote:
> > > > > > > 
> > > > > > > > I don't think it would matter as long as you separate the
> > types of
> > > > > > message in different topics. Then just add more consumers to the
> > > > > 
> > > > 
> > > 
> > 
> > ones
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > that
> > > > > > are slow. Am I missing something?
> > > > > > > > 
> > > > > > > > On Aug 25, 2013, at 8:59 AM, Ian Friedman <i...@flurry.com 
> > > > > > > > (mailto:i...@flurry.com)(mailto:
> > i...@flurry.com (mailto:i...@flurry.com)) (mailto:
> > > > i...@flurry.com (mailto:i...@flurry.com)) (mailto:
> > > > > > i...@flurry.com (mailto:i...@flurry.com))> wrote:
> > > > > > > > 
> > > > > > > > > What if you don't know ahead of time how long a message will
> > > > take to
> > > > > > consume?
> > > > > > > > > 
> > > > > > > > > --
> > > > > > > > > Ian Friedman
> > > > > > > > > 
> > > > > > > > > 
> > > > > > > > > On Sunday, August 25, 2013 at 10:45 AM, Neha Narkhede wrote:
> > > > > > > > > 
> > > > > > > > > > Making producer side partitioning depend on consumer
> > behavior
> > > > > > might not be
> > > > > > > > > > such a good idea. If consumption is a bottleneck, changing
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > producer side
> > > > > > > > > > partitioning may not help. To relieve consumption
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > 
> > 
> > bottleneck,
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > you
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > may need
> > > > > > > > > > to increase the number of partitions for those topics and
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > increase
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > the
> > > > > > > > > > number of consumer instances.
> > > > > > > > > > 
> > > > > > > > > > You mentioned that the consumers take longer to process
> > certain
> > > > > > kinds of
> > > > > > > > > > messages. What you can do is place the messages that
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > 
> > 
> > require
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > slower
> > > > > > > > > > processing in separate topics, so that you can scale the
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > number of
> > > > > > > > > > partitions and number of consumer instances, for those
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > messages
> > > > > > > > > > independently.
> > > > > > > > > > 
> > > > > > > > > > Thanks,
> > > > > > > > > > Neha
> > > > > > > > > > 
> > > > > > > > > > 
> > > > > > > > > > On Sat, Aug 24, 2013 at 9:57 AM, Ian Friedman <
> > i...@flurry.com (mailto:i...@flurry.com)(mailto:
> > > > i...@flurry.com (mailto:i...@flurry.com))(mailto:
> > > > > > i...@flurry.com) (mailto:i...@flurry.com)> wrote:
> > > > > > > > > > 
> > > > > > > > > > > Hey guys! We recently deployed our kafka data pipeline
> > > > > > application over
> > > > > > > > > > > the weekend and it is working out quite well once we
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > ironed
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > out
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > all the
> > > > > > > > > > > issues. There is one behavior that we've noticed that is
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > mildly
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > troubling,
> > > > > > > > > > > though not a deal breaker. We're using a single topic
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > with
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > many
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > partitions
> > > > > > > > > > > (1200 total) to load balance our 300 consumers, but what
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > seems
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > to happen is
> > > > > > > > > > > that some partitions end up more backed up than others.
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > This
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > is
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > probably
> > > > > > > > > > > due more to the specifics of the application since some
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > messages
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > take much
> > > > > > > > > > > longer than others to process.
> > > > > > > > > > > 
> > > > > > > > > > > I'm thinking that the random partitioning in the
> > producer is
> > > > > > unsuited to
> > > > > > > > > > > our specific needs. One option I was considering was to
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > write an
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > alternate
> > > > > > > > > > > partitioner that looks at the consumer offsets from
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > zookeeper
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > (as in the
> > > > > > > > > > > ConsumerOffsetChecker) and probabilistically weights the
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > partitions by
> > > > > > > > > > > their lag. Does this sound like a good idea to anyone
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > 
> > 
> > else?
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > Is
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > there a
> > > > > > > > > > > better or preferably already built solution? If anyone
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > has
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > > any
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > ideas or
> > > > > > > > > > > feedback I'd sincerely appreciate it.
> > > > > > > > > > > 
> > > > > > > > > > > Thanks so much in advance.
> > > > > > > > > > > 
> > > > > > > > > > > P.S. thanks especially to everyone who's answered my dumb
> > > > > > questions on
> > > > > > > > > > > this mailing list over the past few months, we couldn't
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > > 
> > > 
> > 
> > have
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > > 
> > > > > > done it
> > > > > > > > > > > without you!
> > > > > > > > > > > 
> > > > > > > > > > > --
> > > > > > > > > > > Ian Friedman
> > > > > > > > > > > 
> > > > > > > > > > 
> > > > > > > > > 
> > > > > > > > 
> > > > > > > 
> > > > > > 
> > > > > > 
> > > > > 
> > > > 
> > > 
> > 
> > 
> 
> 
> 


Reply via email to