it seems HadoopFsRelation keeps track of all part files (instead of just the data directories). i believe this has something to do with parquet footers but i didnt bother to look more into it. but yet the result is that driver side it: 1) tries to keep track of all part files in a Map[Path, FileStatus] 2) it also tries to serialize the paths to all part files (instead of just the data directories) in the Hadoop JobConf object (or create a JobConf per part file in case of spark-avro)
i agree this approach is not scalable... i ran into it myself with spark-avro where a job simply never gets started on a large number of part files. i am still trying to understand better why all the part files need to be tracked driver side but i am pretty sure i plan to remove this in our inhouse spark version. i also noticed code that actually assumes the schema for every part file can be different (even within the same partition, which seems unlikely, except if you use insert i guess), and the code tries to reconcile the schema between all part files... i also do not think this is scalable. sorry this became a bit of a rant On Mon, Oct 26, 2015 at 9:56 AM, Jerry Lam <chiling...@gmail.com> wrote: > Hi Fengdong, > > Why it needs more memory at the driver side when there are many > partitions? It seems the implementation can only support use cases for a > dozen of partition when it is over 100, it fails apart. It is also quite > slow to initialize the loading of partition tables when the number of > partition is over 100. > > Best Regards, > > Jerry > > Sent from my iPhone > > On 26 Oct, 2015, at 2:50 am, Fengdong Yu <fengdo...@everstring.com> wrote: > > How many partitions you generated? > if Millions generated, then there is a huge memory consumed. > > > > > > On Oct 26, 2015, at 10:58 AM, Jerry Lam <chiling...@gmail.com> wrote: > > Hi guys, > > I mentioned that the partitions are generated so I tried to read the > partition data from it. The driver is OOM after few minutes. The stack > trace is below. It looks very similar to the the jstack above (note on the > refresh method). Thanks! > > Name: java.lang.OutOfMemoryError > Message: GC overhead limit exceeded > StackTrace: java.util.Arrays.copyOf(Arrays.java:2367) > java.lang.AbstractStringBuilder.expandCapacity(AbstractStringBuilder.java:130) > java.lang.AbstractStringBuilder.ensureCapacityInternal(AbstractStringBuilder.java:114) > java.lang.AbstractStringBuilder.append(AbstractStringBuilder.java:415) > java.lang.StringBuilder.append(StringBuilder.java:132) > org.apache.hadoop.fs.Path.toString(Path.java:384) > org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(interfaces.scala:447) > org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(interfaces.scala:447) > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) > scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108) > scala.collection.TraversableLike$class.map(TraversableLike.scala:244) > scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108) > org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.listLeafFiles(interfaces.scala:447) > org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.refresh(interfaces.scala:453)org.apache.spark.sql.sources.HadoopFsRelation.org > > <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache$lzycompute(interfaces.scala:465)org.apache.spark.sql.sources.HadoopFsRelation.org > > <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache(interfaces.scala:463) > org.apache.spark.sql.sources.HadoopFsRelation.cachedLeafStatuses(interfaces.scala:470) > org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$MetadataCache.refresh(ParquetRelation.scala:381)org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.org > > <http://org.apache.spark.sql.execution.datasources.parquet.parquetrelation.org/>$apache$spark$sql$execution$datasources$parquet$ParquetRelation$$metadataCache$lzycompute(ParquetRelation.scala:145)org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.org > > <http://org.apache.spark.sql.execution.datasources.parquet.parquetrelation.org/>$apache$spark$sql$execution$datasources$parquet$ParquetRelation$$metadataCache(ParquetRelation.scala:143) > org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anonfun$6.apply(ParquetRelation.scala:196) > org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anonfun$6.apply(ParquetRelation.scala:196) > scala.Option.getOrElse(Option.scala:120) > org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.dataSchema(ParquetRelation.scala:196) > org.apache.spark.sql.sources.HadoopFsRelation.schema$lzycompute(interfaces.scala:561) > org.apache.spark.sql.sources.HadoopFsRelation.schema(interfaces.scala:560) > org.apache.spark.sql.execution.datasources.LogicalRelation.<init>(LogicalRelation.scala:31) > org.apache.spark.sql.SQLContext.baseRelationToDataFrame(SQLContext.scala:395) > org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:267) > > > On Sun, Oct 25, 2015 at 10:25 PM, Jerry Lam <chiling...@gmail.com> wrote: > >> Hi Josh, >> >> No I don't have speculation enabled. The driver took about few hours >> until it was OOM. Interestingly, all partitions are generated successfully >> (_SUCCESS file is written in the output directory). Is there a reason why >> the driver needs so much memory? The jstack revealed that it called refresh >> some file statuses. Is there a way to avoid OutputCommitCoordinator to >> use so much memory? >> >> Ultimately, I choose to use partitions because most of the queries I have >> will execute based the partition field. For example, "SELECT events from >> customer where customer_id = 1234". If the partition is based on >> customer_id, all events for a customer can be easily retrieved without >> filtering the entire dataset which is much more efficient (I hope). >> However, I notice that the implementation of the partition logic does not >> seem to allow this type of use cases without using a lot of memory which is >> a bit odd in my opinion. Any help will be greatly appreciated. >> >> Best Regards, >> >> Jerry >> >> >> >> On Sun, Oct 25, 2015 at 9:25 PM, Josh Rosen <rosenvi...@gmail.com> wrote: >> >>> Hi Jerry, >>> >>> Do you have speculation enabled? A write which produces one million >>> files / output partitions might be using tons of driver memory via the >>> OutputCommitCoordinator's bookkeeping data structures. >>> >>> On Sun, Oct 25, 2015 at 5:50 PM, Jerry Lam <chiling...@gmail.com> wrote: >>> >>>> Hi spark guys, >>>> >>>> I think I hit the same issue SPARK-8890 >>>> https://issues.apache.org/jira/browse/SPARK-8890. It is marked as >>>> resolved. However it is not. I have over a million output directories for 1 >>>> single column in partitionBy. Not sure if this is a regression issue? Do I >>>> need to set some parameters to make it more memory efficient? >>>> >>>> Best Regards, >>>> >>>> Jerry >>>> >>>> >>>> >>>> >>>> On Sun, Oct 25, 2015 at 8:39 PM, Jerry Lam <chiling...@gmail.com> >>>> wrote: >>>> >>>>> Hi guys, >>>>> >>>>> After waiting for a day, it actually causes OOM on the spark driver. I >>>>> configure the driver to have 6GB. Note that I didn't call refresh myself. >>>>> The method was called when saving the dataframe in parquet format. Also >>>>> I'm >>>>> using partitionBy() on the DataFrameWriter to generate over 1 million >>>>> files. Not sure why it OOM the driver after the job is marked _SUCCESS in >>>>> the output folder. >>>>> >>>>> Best Regards, >>>>> >>>>> Jerry >>>>> >>>>> >>>>> On Sat, Oct 24, 2015 at 9:35 PM, Jerry Lam <chiling...@gmail.com> >>>>> wrote: >>>>> >>>>>> Hi Spark users and developers, >>>>>> >>>>>> Does anyone encounter any issue when a spark SQL job produces a lot >>>>>> of files (over 1 millions), the job hangs on the refresh method? I'm >>>>>> using >>>>>> spark 1.5.1. Below is the stack trace. I saw the parquet files are >>>>>> produced >>>>>> but the driver is doing something very intensively (it uses all the >>>>>> cpus). >>>>>> Does it mean Spark SQL cannot be used to produce over 1 million files in >>>>>> a >>>>>> single job? >>>>>> >>>>>> Thread 528: (state = BLOCKED) >>>>>> - java.util.Arrays.copyOf(char[], int) @bci=1, line=2367 (Compiled >>>>>> frame) >>>>>> - java.lang.AbstractStringBuilder.expandCapacity(int) @bci=43, >>>>>> line=130 (Compiled frame) >>>>>> - java.lang.AbstractStringBuilder.ensureCapacityInternal(int) >>>>>> @bci=12, line=114 (Compiled frame) >>>>>> - java.lang.AbstractStringBuilder.append(java.lang.String) @bci=19, >>>>>> line=415 (Compiled frame) >>>>>> - java.lang.StringBuilder.append(java.lang.String) @bci=2, line=132 >>>>>> (Compiled frame) >>>>>> - org.apache.hadoop.fs.Path.toString() @bci=128, line=384 (Compiled >>>>>> frame) >>>>>> - >>>>>> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(org.apache.hadoop.fs.FileStatus) >>>>>> @bci=4, line=447 (Compiled frame) >>>>>> - >>>>>> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(java.lang.Object) >>>>>> @bci=5, line=447 (Compiled frame) >>>>>> - >>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(java.lang.Object) >>>>>> @bci=9, line=244 (Compiled frame) >>>>>> - >>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(java.lang.Object) >>>>>> @bci=2, line=244 (Compiled frame) >>>>>> - >>>>>> scala.collection.IndexedSeqOptimized$class.foreach(scala.collection.IndexedSeqOptimized, >>>>>> scala.Function1) @bci=22, line=33 (Compiled frame) >>>>>> - scala.collection.mutable.ArrayOps$ofRef.foreach(scala.Function1) >>>>>> @bci=2, line=108 (Compiled frame) >>>>>> - >>>>>> scala.collection.TraversableLike$class.map(scala.collection.TraversableLike, >>>>>> scala.Function1, scala.collection.generic.CanBuildFrom) @bci=17, line=244 >>>>>> (Compiled frame) >>>>>> - scala.collection.mutable.ArrayOps$ofRef.map(scala.Function1, >>>>>> scala.collection.generic.CanBuildFrom) @bci=3, line=108 (Interpreted >>>>>> frame) >>>>>> - >>>>>> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.listLeafFiles(java.lang.String[]) >>>>>> @bci=279, line=447 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.refresh() >>>>>> @bci=8, line=453 (Interpreted frame) >>>>>> - org.apache.spark.sql.sources.HadoopFsRelation.org >>>>>> <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache$lzycompute() >>>>>> @bci=26, line=465 (Interpreted frame) >>>>>> - org.apache.spark.sql.sources.HadoopFsRelation.org >>>>>> <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache() >>>>>> @bci=12, line=463 (Interpreted frame) >>>>>> - org.apache.spark.sql.sources.HadoopFsRelation.refresh() @bci=1, >>>>>> line=540 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.refresh() >>>>>> @bci=1, line=204 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp() >>>>>> @bci=392, line=152 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply() >>>>>> @bci=1, line=108 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply() >>>>>> @bci=1, line=108 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(org.apache.spark.sql.SQLContext, >>>>>> org.apache.spark.sql.SQLContext$QueryExecution, scala.Function0) @bci=96, >>>>>> line=56 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(org.apache.spark.sql.SQLContext) >>>>>> @bci=718, line=108 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute() >>>>>> @bci=20, line=57 (Interpreted frame) >>>>>> - org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult() >>>>>> @bci=15, line=57 (Interpreted frame) >>>>>> - org.apache.spark.sql.execution.ExecutedCommand.doExecute() >>>>>> @bci=12, line=69 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply() >>>>>> @bci=11, line=140 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply() >>>>>> @bci=1, >>>>>> line=138 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(org.apache.spark.SparkContext, >>>>>> java.lang.String, boolean, boolean, scala.Function0) @bci=131, line=147 >>>>>> (Interpreted frame) >>>>>> - org.apache.spark.sql.execution.SparkPlan.execute() @bci=189, >>>>>> line=138 (Interpreted frame) >>>>>> - org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute() >>>>>> @bci=21, line=933 (Interpreted frame) >>>>>> - org.apache.spark.sql.SQLContext$QueryExecution.toRdd() @bci=13, >>>>>> line=933 (Interpreted frame) >>>>>> - >>>>>> org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(org.apache.spark.sql.SQLContext, >>>>>> java.lang.String, java.lang.String[], org.apache.spark.sql.SaveMode, >>>>>> scala.collection.immutable.Map, org.apache.spark.sql.DataFrame) @bci=293, >>>>>> line=197 (Interpreted frame) >>>>>> - org.apache.spark.sql.DataFrameWriter.save() @bci=64, line=146 >>>>>> (Interpreted frame) >>>>>> - org.apache.spark.sql.DataFrameWriter.save(java.lang.String) >>>>>> @bci=24, line=137 (Interpreted frame) >>>>>> - org.apache.spark.sql.DataFrameWriter.parquet(java.lang.String) >>>>>> @bci=8, line=304 (Interpreted frame) >>>>>> >>>>>> Best Regards, >>>>>> >>>>>> Jerry >>>>>> >>>>>> >>>>>> >>>>> >>>> >>> >> > >