How many partitions you generated?
if Millions generated, then there is a huge memory consumed.





> On Oct 26, 2015, at 10:58 AM, Jerry Lam <chiling...@gmail.com> wrote:
> 
> Hi guys,
> 
> I mentioned that the partitions are generated so I tried to read the 
> partition data from it. The driver is OOM after few minutes. The stack trace 
> is below. It looks very similar to the the jstack above (note on the refresh 
> method). Thanks!
> 
> Name: java.lang.OutOfMemoryError
> Message: GC overhead limit exceeded
> StackTrace: java.util.Arrays.copyOf(Arrays.java:2367)
> java.lang.AbstractStringBuilder.expandCapacity(AbstractStringBuilder.java:130)
> java.lang.AbstractStringBuilder.ensureCapacityInternal(AbstractStringBuilder.java:114)
> java.lang.AbstractStringBuilder.append(AbstractStringBuilder.java:415)
> java.lang.StringBuilder.append(StringBuilder.java:132)
> org.apache.hadoop.fs.Path.toString(Path.java:384)
> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(interfaces.scala:447)
> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(interfaces.scala:447)
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
> scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
> scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)
> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.listLeafFiles(interfaces.scala:447)
> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.refresh(interfaces.scala:453)
> org.apache.spark.sql.sources.HadoopFsRelation.org 
> <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache$lzycompute(interfaces.scala:465)
> org.apache.spark.sql.sources.HadoopFsRelation.org 
> <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache(interfaces.scala:463)
> org.apache.spark.sql.sources.HadoopFsRelation.cachedLeafStatuses(interfaces.scala:470)
> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$MetadataCache.refresh(ParquetRelation.scala:381)
> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.org 
> <http://org.apache.spark.sql.execution.datasources.parquet.parquetrelation.org/>$apache$spark$sql$execution$datasources$parquet$ParquetRelation$$metadataCache$lzycompute(ParquetRelation.scala:145)
> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.org 
> <http://org.apache.spark.sql.execution.datasources.parquet.parquetrelation.org/>$apache$spark$sql$execution$datasources$parquet$ParquetRelation$$metadataCache(ParquetRelation.scala:143)
> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anonfun$6.apply(ParquetRelation.scala:196)
> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anonfun$6.apply(ParquetRelation.scala:196)
> scala.Option.getOrElse(Option.scala:120)
> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.dataSchema(ParquetRelation.scala:196)
> org.apache.spark.sql.sources.HadoopFsRelation.schema$lzycompute(interfaces.scala:561)
> org.apache.spark.sql.sources.HadoopFsRelation.schema(interfaces.scala:560)
> org.apache.spark.sql.execution.datasources.LogicalRelation.<init>(LogicalRelation.scala:31)
> org.apache.spark.sql.SQLContext.baseRelationToDataFrame(SQLContext.scala:395)
> org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:267)
> 
> On Sun, Oct 25, 2015 at 10:25 PM, Jerry Lam <chiling...@gmail.com 
> <mailto:chiling...@gmail.com>> wrote:
> Hi Josh,
> 
> No I don't have speculation enabled. The driver took about few hours until it 
> was OOM. Interestingly, all partitions are generated successfully (_SUCCESS 
> file is written in the output directory). Is there a reason why the driver 
> needs so much memory? The jstack revealed that it called refresh some file 
> statuses. Is there a way to avoid OutputCommitCoordinator to use so much 
> memory? 
> 
> Ultimately, I choose to use partitions because most of the queries I have 
> will execute based the partition field. For example, "SELECT events from 
> customer where customer_id = 1234". If the partition is based on customer_id, 
> all events for a customer can be easily retrieved without filtering the 
> entire dataset which is much more efficient (I hope). However, I notice that 
> the implementation of the partition logic does not seem to allow this type of 
> use cases without using a lot of memory which is a bit odd in my opinion. Any 
> help will be greatly appreciated.
> 
> Best Regards,
> 
> Jerry
> 
> 
> 
> On Sun, Oct 25, 2015 at 9:25 PM, Josh Rosen <rosenvi...@gmail.com 
> <mailto:rosenvi...@gmail.com>> wrote:
> Hi Jerry,
> 
> Do you have speculation enabled? A write which produces one million files / 
> output partitions might be using tons of driver memory via the 
> OutputCommitCoordinator's bookkeeping data structures.
> 
> On Sun, Oct 25, 2015 at 5:50 PM, Jerry Lam <chiling...@gmail.com 
> <mailto:chiling...@gmail.com>> wrote:
> Hi spark guys,
> 
> I think I hit the same issue SPARK-8890 
> https://issues.apache.org/jira/browse/SPARK-8890 
> <https://issues.apache.org/jira/browse/SPARK-8890>. It is marked as resolved. 
> However it is not. I have over a million output directories for 1 single 
> column in partitionBy. Not sure if this is a regression issue? Do I need to 
> set some parameters to make it more memory efficient?
> 
> Best Regards,
> 
> Jerry
> 
> 
> 
> 
> On Sun, Oct 25, 2015 at 8:39 PM, Jerry Lam <chiling...@gmail.com 
> <mailto:chiling...@gmail.com>> wrote:
> Hi guys,
> 
> After waiting for a day, it actually causes OOM on the spark driver. I 
> configure the driver to have 6GB. Note that I didn't call refresh myself. The 
> method was called when saving the dataframe in parquet format. Also I'm using 
> partitionBy() on the DataFrameWriter to generate over 1 million files. Not 
> sure why it OOM the driver after the job is marked _SUCCESS in the output 
> folder. 
> 
> Best Regards,
> 
> Jerry
> 
> 
> On Sat, Oct 24, 2015 at 9:35 PM, Jerry Lam <chiling...@gmail.com 
> <mailto:chiling...@gmail.com>> wrote:
> Hi Spark users and developers,
> 
> Does anyone encounter any issue when a spark SQL job produces a lot of files 
> (over 1 millions), the job hangs on the refresh method? I'm using spark 
> 1.5.1. Below is the stack trace. I saw the parquet files are produced but the 
> driver is doing something very intensively (it uses all the cpus). Does it 
> mean Spark SQL cannot be used to produce over 1 million files in a single job?
> 
> Thread 528: (state = BLOCKED)
>  - java.util.Arrays.copyOf(char[], int) @bci=1, line=2367 (Compiled frame)
>  - java.lang.AbstractStringBuilder.expandCapacity(int) @bci=43, line=130 
> (Compiled frame)
>  - java.lang.AbstractStringBuilder.ensureCapacityInternal(int) @bci=12, 
> line=114 (Compiled frame)
>  - java.lang.AbstractStringBuilder.append(java.lang.String) @bci=19, line=415 
> (Compiled frame)
>  - java.lang.StringBuilder.append(java.lang.String) @bci=2, line=132 
> (Compiled frame)
>  - org.apache.hadoop.fs.Path.toString() @bci=128, line=384 (Compiled frame)
>  - 
> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(org.apache.hadoop.fs.FileStatus)
>  @bci=4, line=447 (Compiled frame)
>  - 
> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache$$anonfun$listLeafFiles$1.apply(java.lang.Object)
>  @bci=5, line=447 (Compiled frame)
>  - scala.collection.TraversableLike$$anonfun$map$1.apply(java.lang.Object) 
> @bci=9, line=244 (Compiled frame)
>  - scala.collection.TraversableLike$$anonfun$map$1.apply(java.lang.Object) 
> @bci=2, line=244 (Compiled frame)
>  - 
> scala.collection.IndexedSeqOptimized$class.foreach(scala.collection.IndexedSeqOptimized,
>  scala.Function1) @bci=22, line=33 (Compiled frame)
>  - scala.collection.mutable.ArrayOps$ofRef.foreach(scala.Function1) @bci=2, 
> line=108 (Compiled frame)
>  - 
> scala.collection.TraversableLike$class.map(scala.collection.TraversableLike, 
> scala.Function1, scala.collection.generic.CanBuildFrom) @bci=17, line=244 
> (Compiled frame)
>  - scala.collection.mutable.ArrayOps$ofRef.map(scala.Function1, 
> scala.collection.generic.CanBuildFrom) @bci=3, line=108 (Interpreted frame)
>  - 
> org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.listLeafFiles(java.lang.String[])
>  @bci=279, line=447 (Interpreted frame)
>  - org.apache.spark.sql.sources.HadoopFsRelation$FileStatusCache.refresh() 
> @bci=8, line=453 (Interpreted frame)
>  - org.apache.spark.sql.sources.HadoopFsRelation.org 
> <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache$lzycompute()
>  @bci=26, line=465 (Interpreted frame)
>  - org.apache.spark.sql.sources.HadoopFsRelation.org 
> <http://org.apache.spark.sql.sources.hadoopfsrelation.org/>$apache$spark$sql$sources$HadoopFsRelation$$fileStatusCache()
>  @bci=12, line=463 (Interpreted frame)
>  - org.apache.spark.sql.sources.HadoopFsRelation.refresh() @bci=1, line=540 
> (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.datasources.parquet.ParquetRelation.refresh() 
> @bci=1, line=204 (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp()
>  @bci=392, line=152 (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply()
>  @bci=1, line=108 (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply()
>  @bci=1, line=108 (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(org.apache.spark.sql.SQLContext,
>  org.apache.spark.sql.SQLContext$QueryExecution, scala.Function0) @bci=96, 
> line=56 (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(org.apache.spark.sql.SQLContext)
>  @bci=718, line=108 (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute() 
> @bci=20, line=57 (Interpreted frame)
>  - org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult() @bci=15, 
> line=57 (Interpreted frame)
>  - org.apache.spark.sql.execution.ExecutedCommand.doExecute() @bci=12, 
> line=69 (Interpreted frame)
>  - org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply() 
> @bci=11, line=140 (Interpreted frame)
>  - org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply() 
> @bci=1, line=138 (Interpreted frame)
>  - 
> org.apache.spark.rdd.RDDOperationScope$.withScope(org.apache.spark.SparkContext,
>  java.lang.String, boolean, boolean, scala.Function0) @bci=131, line=147 
> (Interpreted frame)
>  - org.apache.spark.sql.execution.SparkPlan.execute() @bci=189, line=138 
> (Interpreted frame)
>  - org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute() @bci=21, 
> line=933 (Interpreted frame)
>  - org.apache.spark.sql.SQLContext$QueryExecution.toRdd() @bci=13, line=933 
> (Interpreted frame)
>  - 
> org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(org.apache.spark.sql.SQLContext,
>  java.lang.String, java.lang.String[], org.apache.spark.sql.SaveMode, 
> scala.collection.immutable.Map, org.apache.spark.sql.DataFrame) @bci=293, 
> line=197 (Interpreted frame)
>  - org.apache.spark.sql.DataFrameWriter.save() @bci=64, line=146 (Interpreted 
> frame)
>  - org.apache.spark.sql.DataFrameWriter.save(java.lang.String) @bci=24, 
> line=137 (Interpreted frame)
>  - org.apache.spark.sql.DataFrameWriter.parquet(java.lang.String) @bci=8, 
> line=304 (Interpreted frame)
> 
> Best Regards,
> 
> Jerry
> 
> 
> 
> 
> 
> 
> 

Reply via email to