genericRecordsAndKeys.persist(StorageLevel.MEMORY_AND_DISK) with 17 as
repartitioning argument is throwing this exception:


7/13 23:26:36 INFO yarn.ApplicationMaster: Final app status: FAILED,
exitCode: 15, (reason: User class threw exception:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 14
in stage 2.0 failed 4 times, most recent failure: Lost task 14.3 in stage
2.0 (TID 37, phxaishdc9dn0725.phx.ebay.com): java.lang.RuntimeException:
java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE

at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)

at
org.apache.spark.storage.DiskStore$$anonfun$getBytes$2.apply(DiskStore.scala:125)

at
org.apache.spark.storage.DiskStore$$anonfun$getBytes$2.apply(DiskStore.scala:113)

at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1285)

at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:127)

at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:134)

at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:509)

at
org.apache.spark.storage.BlockManager.getBlockData(BlockManager.scala:300)

at
org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)

at
org.apache.spark.network.netty.NettyBlockRpcServer$$anonfun$2.apply(NettyBlockRpcServer.scala:57)

at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)

at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)

at
scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)

at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)

at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)

at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:108)

at
org.apache.spark.network.netty.NettyBlockRpcServer.receive(NettyBlockRpcServer.scala:57)

at
org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(TransportRequestHandler.java:114)


On Mon, Jul 13, 2015 at 10:37 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote:

> I stopped at 35 repartitions as it takes around 12-14 minutes. I cached a
> RDD as it was used in the next two tasks.  However it slowed down the
> process.
>
> Code:
>
>     val genericRecordsAndKeys = inputRecords.map {
>
>       record =>
>
>         val rec = new MasterPrimeRecord(detail, record)
>
>         var keyToOutput = new StringBuilder("");
>
>         dimensions.foreach {
>
>           dim =>
>
>             keyToOutput = keyToOutput.append("_" + rec.get(dim).toString)
>
>         }
>
>         (keyToOutput.toString, rec)
>
>     }
>
>     genericRecordsAndKeys.cache
>
>
>     val quantiles = genericRecordsAndKeys
>
>       .map {
>
>         case (keyToOutput, rec) =>
>
>           var digest: TDigest = TDigest.createAvlTreeDigest(10)
>
>           val fpPaidGMB = rec.get("fpPaidGMB").asInstanceOf[Double]
>
>           digest.add(fpPaidGMB)
>
>           var bbuf: ByteBuffer = ByteBuffer.allocate(digest.byteSize());
>
>           digest.asBytes(bbuf);
>
>           (keyToOutput.toString, bbuf.array())
>
>       }.reduceByKey {
>
>       case (v1, v2) =>
>
>         var tree1 = AVLTreeDigest.fromBytes(ByteBuffer.wrap(v1
> .asInstanceOf[scala.Array[Byte]]))
>
>         var tree2 = AVLTreeDigest.fromBytes(ByteBuffer.wrap(v2
> .asInstanceOf[scala.Array[Byte]]))
>
>         tree1.add(tree2)
>
>         tree1.compress()
>
>         var bbuf: ByteBuffer = ByteBuffer.allocate(tree1.byteSize())
>
>         tree1.asBytes(bbuf)
>
>         bbuf.array
>
>     }
>
>
>     val outputRecords: RDD[(AvroKey[MasterPrimeRecord], NullWritable)] =
> genericRecordsAndKeys.join(quantiles).map {
>
>       case (k, v) =>
>
>         val masterPrimeRec = v._1
>
>         val mergedTree = AVLTreeDigest.fromBytes(ByteBuffer.wrap(v._2))
>
>         val capVal = mergedTree.quantile(0.999)
>
>         if (masterPrimeRec.get("fpPaidGMB").asInstanceOf[Double] > capVal)
> {
>
>           masterPrimeRec.put("fpPaidGMB", capVal)
>
>         }
>
>         val wrap = new AvroKey[MasterPrimeRecord](masterPrimeRec)
>
>         (wrap, NullWritable.get)
>
>     }
>
> On Mon, Jul 13, 2015 at 9:48 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
> wrote:
>
>> My guess worked fine now. The repartion took aproximately 1/4 the time as
>> i reduce the number of paritions.
>> And the rest of the process took 1/4 extra time but that is ok.
>>
>> On Mon, Jul 13, 2015 at 9:46 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
>> wrote:
>>
>>> I reduced the number of partitions to 1/4 to   76  in order to reduce
>>> the time to 1/4 (from 33 to 8) But the re-parition is still running beyond
>>> 15 mins.
>>>
>>> @Nirmal
>>> click on details, shows the code lines and does not show why it is slow.
>>> I know that repartition is slow and want to speed it up
>>>
>>> @Sharma
>>> I have seen increasing the cores speeds up reparition, but it does slow
>>> down the rest of the stages in the job plan.
>>>
>>>
>>> I need some logical explanation and math to know before hand , otherwise
>>> with Spark am always firing in dark. Spark has been a depressingly
>>> lackluster so far (Join use case and now a simple outlier detection using
>>> TDigest)
>>>
>>> On Mon, Jul 13, 2015 at 9:37 PM, Aniruddh Sharma <asharma...@gmail.com>
>>> wrote:
>>>
>>>> Hi Deepak
>>>>
>>>> Not 100% sure , but please try increasing (--executor-cores ) to twice
>>>> the number of your physical cores on your machine.
>>>>
>>>> Thanks and Regards
>>>> Aniruddh
>>>>
>>>> On Tue, Jul 14, 2015 at 9:49 AM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
>>>> wrote:
>>>>
>>>>> Its been 30 minutes and still the partitioner has not completed yet,
>>>>> its ever.
>>>>>
>>>>> Without repartition, i see this error
>>>>> https://issues.apache.org/jira/browse/SPARK-5928
>>>>>
>>>>>
>>>>>  FetchFailed(BlockManagerId(1, imran-2.ent.cloudera.com, 55028), 
>>>>> shuffleId=1, mapId=0, reduceId=0, message=
>>>>> org.apache.spark.shuffle.FetchFailedException: Adjusted frame length 
>>>>> exceeds 2147483647: 3021252889 - discarded
>>>>>   at 
>>>>> org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$.org$apache$spark$shuffle$hash$BlockStoreShuffleFetcher$$unpackBlock$1(BlockStoreShuffleFetcher.scala:67)
>>>>>   at 
>>>>> org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$$anonfun$3.apply(BlockStoreShuffleFetcher.scala:83)
>>>>>   at 
>>>>> org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$$anonfun$3.apply(BlockStoreShuffleFetcher.scala:83)
>>>>>   at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
>>>>>   at 
>>>>> org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
>>>>>
>>>>>
>>>>>
>>>>>
>>>>> On Mon, Jul 13, 2015 at 8:34 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com>
>>>>> wrote:
>>>>>
>>>>>> I have 100 MB of Avro data. and i do repartition(307) is taking
>>>>>> forever.
>>>>>>
>>>>>> 2. val x = input.repartition(7907).map( {k1,k2,k3,k4}, {inputRecord} )
>>>>>> 3. val quantiles =
>>>>>> x.map( {k1,k2,k3,k4},  TDigest(inputRecord).asBytes ).reduceByKey() [ 
>>>>>> This
>>>>>> was groupBy earlier ]
>>>>>> 4. x.join(quantiles).coalesce(100).writeInAvro
>>>>>>
>>>>>>
>>>>>> Attached is full Scala code.
>>>>>>
>>>>>> I have 340 Yarn node cluster with 14G Ram on each node and have input
>>>>>> data of just just 100 MB.  (Hadoop takes 2.5 hours on 1 TB dataset)
>>>>>>
>>>>>>
>>>>>> ./bin/spark-submit -v --master yarn-cluster  --jars
>>>>>> /apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/hdfs/hadoop-hdfs-2.4.1-EBAY-2.jar,/home/dvasthimal/spark1.4/lib/spark_reporting_dep_only-1.0-SNAPSHOT.jar
>>>>>>  --num-executors 330 --driver-memory 14g --driver-java-options
>>>>>> "-XX:MaxPermSize=512M -Xmx4096M -Xms4096M -verbose:gc -XX:+PrintGCDetails
>>>>>> -XX:+PrintGCTimeStamps" --executor-memory 14g --executor-cores 1 --queue
>>>>>> hdmi-others --class com.ebay.ep.poc.spark.reporting.SparkApp
>>>>>> /home/dvasthimal/spark1.4/lib/spark_reporting-1.0-SNAPSHOT.jar
>>>>>> startDate=2015-06-20 endDate=2015-06-21
>>>>>> input=/apps/hdmi-prod/b_um/epdatasets/exptsession 
>>>>>> subcommand=ppwmasterprime
>>>>>> output=/user/dvasthimal/epdatasets/ppwmasterprime buffersize=128
>>>>>> maxbuffersize=1068 maxResultSize=200G
>>>>>>
>>>>>>
>>>>>> I see this in stdout of the task on that executor
>>>>>>
>>>>>> 15/07/13 19:58:48 WARN hdfs.BlockReaderLocal: The short-circuit local 
>>>>>> reads feature cannot be used because libhadoop cannot be loaded.
>>>>>> 15/07/13 20:00:08 INFO collection.ExternalSorter: Thread 47 spilling 
>>>>>> in-memory map of 2.2 GB to disk (1 time so far)
>>>>>> 15/07/13 20:01:31 INFO collection.ExternalSorter: Thread 47 spilling 
>>>>>> in-memory map of 2.2 GB to disk (2 times so far)
>>>>>> 15/07/13 20:03:07 INFO collection.ExternalSorter: Thread 47 spilling 
>>>>>> in-memory map of 2.2 GB to disk (3 times so far)
>>>>>> 15/07/13 20:04:32 INFO collection.ExternalSorter: Thread 47 spilling 
>>>>>> in-memory map of 2.2 GB to disk (4 times so far)
>>>>>> 15/07/13 20:06:21 INFO collection.ExternalSorter: Thread 47 spilling 
>>>>>> in-memory map of 2.2 GB to disk (5 times so far)
>>>>>> 15/07/13 20:08:09 INFO collection.ExternalSorter: Thread 47 spilling 
>>>>>> in-memory map of 2.2 GB to disk (6 times so far)
>>>>>> 15/07/13 20:09:51 INFO collection.ExternalSorter: Thread 47 spilling 
>>>>>> in-memory map of 2.2 GB to disk (7 times so far)
>>>>>>
>>>>>>
>>>>>>
>>>>>> Also attached is the thread dump
>>>>>>
>>>>>>
>>>>>> --
>>>>>> Deepak
>>>>>>
>>>>>>
>>>>>
>>>>>
>>>>> --
>>>>> Deepak
>>>>>
>>>>>
>>>>
>>>
>>>
>>> --
>>> Deepak
>>>
>>>
>>
>>
>> --
>> Deepak
>>
>>
>
>
> --
> Deepak
>
>


-- 
Deepak

Reply via email to