Its been 30 minutes and still the partitioner has not completed yet, its
ever.

Without repartition, i see this error
https://issues.apache.org/jira/browse/SPARK-5928


 FetchFailed(BlockManagerId(1, imran-2.ent.cloudera.com, 55028),
shuffleId=1, mapId=0, reduceId=0, message=
org.apache.spark.shuffle.FetchFailedException: Adjusted frame length
exceeds 2147483647: 3021252889 - discarded
        at 
org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$.org$apache$spark$shuffle$hash$BlockStoreShuffleFetcher$$unpackBlock$1(BlockStoreShuffleFetcher.scala:67)
        at 
org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$$anonfun$3.apply(BlockStoreShuffleFetcher.scala:83)
        at 
org.apache.spark.shuffle.hash.BlockStoreShuffleFetcher$$anonfun$3.apply(BlockStoreShuffleFetcher.scala:83)
        at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
        at 
org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)




On Mon, Jul 13, 2015 at 8:34 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote:

> I have 100 MB of Avro data. and i do repartition(307) is taking forever.
>
> 2. val x = input.repartition(7907).map( {k1,k2,k3,k4}, {inputRecord} )
> 3. val quantiles = x.map( {k1,k2,k3,k4},  TDigest(inputRecord).asBytes
> ).reduceByKey() [ This was groupBy earlier ]
> 4. x.join(quantiles).coalesce(100).writeInAvro
>
>
> Attached is full Scala code.
>
> I have 340 Yarn node cluster with 14G Ram on each node and have input data
> of just just 100 MB.  (Hadoop takes 2.5 hours on 1 TB dataset)
>
>
> ./bin/spark-submit -v --master yarn-cluster  --jars
> /apache/hadoop-2.4.1-2.1.3.0-2-EBAY/share/hadoop/hdfs/hadoop-hdfs-2.4.1-EBAY-2.jar,/home/dvasthimal/spark1.4/lib/spark_reporting_dep_only-1.0-SNAPSHOT.jar
>  --num-executors 330 --driver-memory 14g --driver-java-options
> "-XX:MaxPermSize=512M -Xmx4096M -Xms4096M -verbose:gc -XX:+PrintGCDetails
> -XX:+PrintGCTimeStamps" --executor-memory 14g --executor-cores 1 --queue
> hdmi-others --class com.ebay.ep.poc.spark.reporting.SparkApp
> /home/dvasthimal/spark1.4/lib/spark_reporting-1.0-SNAPSHOT.jar
> startDate=2015-06-20 endDate=2015-06-21
> input=/apps/hdmi-prod/b_um/epdatasets/exptsession subcommand=ppwmasterprime
> output=/user/dvasthimal/epdatasets/ppwmasterprime buffersize=128
> maxbuffersize=1068 maxResultSize=200G
>
>
> I see this in stdout of the task on that executor
>
> 15/07/13 19:58:48 WARN hdfs.BlockReaderLocal: The short-circuit local reads 
> feature cannot be used because libhadoop cannot be loaded.
> 15/07/13 20:00:08 INFO collection.ExternalSorter: Thread 47 spilling 
> in-memory map of 2.2 GB to disk (1 time so far)
> 15/07/13 20:01:31 INFO collection.ExternalSorter: Thread 47 spilling 
> in-memory map of 2.2 GB to disk (2 times so far)
> 15/07/13 20:03:07 INFO collection.ExternalSorter: Thread 47 spilling 
> in-memory map of 2.2 GB to disk (3 times so far)
> 15/07/13 20:04:32 INFO collection.ExternalSorter: Thread 47 spilling 
> in-memory map of 2.2 GB to disk (4 times so far)
> 15/07/13 20:06:21 INFO collection.ExternalSorter: Thread 47 spilling 
> in-memory map of 2.2 GB to disk (5 times so far)
> 15/07/13 20:08:09 INFO collection.ExternalSorter: Thread 47 spilling 
> in-memory map of 2.2 GB to disk (6 times so far)
> 15/07/13 20:09:51 INFO collection.ExternalSorter: Thread 47 spilling 
> in-memory map of 2.2 GB to disk (7 times so far)
>
>
>
> Also attached is the thread dump
>
>
> --
> Deepak
>
>


-- 
Deepak

Reply via email to