I set "ulimit -n 100000" in conf/spark-env.sh, is it too small?

On Thu, Mar 27, 2014 at 3:36 PM, Sonal Goyal <sonalgoy...@gmail.com> wrote:

> Hi Hahn,
>
> What's the ulimit on your systems? Please check the following link for a
> discussion on the too many files open.
>
>
> http://mail-archives.apache.org/mod_mbox/spark-user/201402.mbox/%3ccangvg8qpn_wllsrcjegdb7hmza2ux7myxzhfvtz+b-sdxdk...@mail.gmail.com%3E
>
>
> Sent from my iPad
>
> > On Mar 27, 2014, at 12:15 PM, Hahn Jiang <hahn.jiang....@gmail.com>
> wrote:
> >
> > Hi, all
> >
> > I write a spark program on yarn. When I use small size input file, my
> program can run well. But my job will failed if input size is more than 40G.
> >
> > the error log:
> > java.io.FileNotFoundException (java.io.FileNotFoundException:
> /home/work/data12/yarn/nodemanager/usercache/appcache/application_1392894597330_86813/spark-local-20140327144433-716b/24/shuffle_0_22_890
> (Too many open files))
> > java.io.FileOutputStream.openAppend(Native Method)
> > java.io.FileOutputStream.<init>(FileOutputStream.java:192)
> >
> org.apache.spark.storage.DiskBlockObjectWriter.open(BlockObjectWriter.scala:113)
> >
> org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:174)
> >
> org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:164)
> >
> org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:161)
> > scala.collection.Iterator$class.foreach(Iterator.scala:727)
> >
> org.apache.spark.util.collection.ExternalAppendOnlyMap$ExternalIterator.foreach(ExternalAppendOnlyMap.scala:239)
> >
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161)
> >
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)
> > org.apache.spark.scheduler.Task.run(Task.scala:53)
> >
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213)
> >
> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49)
> > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178)
> >
> java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
> >
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
> > java.lang.Thread.run(Thread.java:662)
> >
> >
> > my object:
> > object Test {
> >
> >   def main(args: Array[String]) {
> >     val sc = new SparkContext(args(0), "Test",
> >       System.getenv("SPARK_HOME"),
> SparkContext.jarOfClass(this.getClass))
> >
> >     val mg = sc.textFile("/user/.../part-*")
> >     val mct = sc.textFile("/user/.../part-*")
> >
> >     val pair1 = mg.map {
> >       s =>
> >         val cols = s.split("\t")
> >         (cols(0), cols(1))
> >     }
> >     val pair2 = mct.map {
> >       s =>
> >         val cols = s.split("\t")
> >         (cols(0), cols(1))
> >     }
> >     val merge = pair1.union(pair2)
> >     val result = merge.reduceByKey(_ + _)
> >     val outputPath = new Path("/user/xxx/temp/spark-output")
> >     outputPath.getFileSystem(new Configuration()).delete(outputPath,
> true)
> >     result.saveAsTextFile(outputPath.toString)
> >
> >     System.exit(0)
> >   }
> >
> > }
> >
> > My spark version is 0.9 and I run my job use this command
> "/opt/soft/spark/bin/spark-class org.apache.spark.deploy.yarn.Client --jar
> ./spark-example_2.10-0.1-SNAPSHOT.jar --class Test --queue default --args
> yarn-standalone --num-workers 500 --master-memory 7g --worker-memory 7g
> --worker-cores 2"
> >
>

Reply via email to