Hi Hahn,

What's the ulimit on your systems? Please check the following link for a 
discussion on the too many files open.

http://mail-archives.apache.org/mod_mbox/spark-user/201402.mbox/%3ccangvg8qpn_wllsrcjegdb7hmza2ux7myxzhfvtz+b-sdxdk...@mail.gmail.com%3E


Sent from my iPad

> On Mar 27, 2014, at 12:15 PM, Hahn Jiang <hahn.jiang....@gmail.com> wrote:
> 
> Hi, all
> 
> I write a spark program on yarn. When I use small size input file, my program 
> can run well. But my job will failed if input size is more than 40G.
> 
> the error log:
> java.io.FileNotFoundException (java.io.FileNotFoundException: 
> /home/work/data12/yarn/nodemanager/usercache/appcache/application_1392894597330_86813/spark-local-20140327144433-716b/24/shuffle_0_22_890
>  (Too many open files))
> java.io.FileOutputStream.openAppend(Native Method)
> java.io.FileOutputStream.<init>(FileOutputStream.java:192)
> org.apache.spark.storage.DiskBlockObjectWriter.open(BlockObjectWriter.scala:113)
> org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:174)
> org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:164)
> org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:161)
> scala.collection.Iterator$class.foreach(Iterator.scala:727)
> org.apache.spark.util.collection.ExternalAppendOnlyMap$ExternalIterator.foreach(ExternalAppendOnlyMap.scala:239)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)
> org.apache.spark.scheduler.Task.run(Task.scala:53)
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213)
> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49)
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178)
> java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
> java.lang.Thread.run(Thread.java:662)
> 
> 
> my object:
> object Test {
> 
>   def main(args: Array[String]) {
>     val sc = new SparkContext(args(0), "Test",
>       System.getenv("SPARK_HOME"), SparkContext.jarOfClass(this.getClass))
> 
>     val mg = sc.textFile("/user/.../part-*")
>     val mct = sc.textFile("/user/.../part-*")
> 
>     val pair1 = mg.map {
>       s =>
>         val cols = s.split("\t")
>         (cols(0), cols(1))
>     }
>     val pair2 = mct.map {
>       s =>
>         val cols = s.split("\t")
>         (cols(0), cols(1))
>     }
>     val merge = pair1.union(pair2)
>     val result = merge.reduceByKey(_ + _)
>     val outputPath = new Path("/user/xxx/temp/spark-output")
>     outputPath.getFileSystem(new Configuration()).delete(outputPath, true)
>     result.saveAsTextFile(outputPath.toString)
> 
>     System.exit(0)
>   }
> 
> }
> 
> My spark version is 0.9 and I run my job use this command 
> "/opt/soft/spark/bin/spark-class org.apache.spark.deploy.yarn.Client --jar 
> ./spark-example_2.10-0.1-SNAPSHOT.jar --class Test --queue default --args 
> yarn-standalone --num-workers 500 --master-memory 7g --worker-memory 7g 
> --worker-cores 2"
> 

Reply via email to