Hi Soumen, I'd try parsing the input using the DataStream API (with a fast JSON library) and then converting it to a Table.
On Thu, Jul 21, 2022 at 6:22 AM Soumen Choudhury <sou....@gmail.com> wrote: > We have a requirement of parsing a very complex json (size around 25 kb > per event) event with a predefined schema (nested schema, with multiple > schema files ) and create a temporary table and from temp table we have to > apply some case statement based some fields( eg. to find out success, > failure count , status code ) and do a aggregation in 1 sec interval. > > We have tried with inbuilt *JSON_VALUE* function to retrieve some field > value and then apply the case statement, but as I am using JSON_VALUE more > than 5/6 times, the application is performing very slow. > > For some other filtering use case we are able to receive more that 1600 > event/sec, but for this case we are only receiving around 300 event/sec for > 1 core . > > Below is the query example: > > *Query 1:* > > "select cast(JSON_QUERY(message, '$.eventRecordHeader.Result'), bigint) AS > result1, JSON_QUERY(message, '$.eventRecordHeader.Cause.ErrorCode' ) AS > errorCode, JSON_QUERY(message, '$.eventRecordHeader.Cause.SubCause' ) AS > subCause, JSON_QUERY(message, > '$.eventRecordHeader.Cause.SubCause.SubProtocol' ) AS subProtocol, > JSON_QUERY(message, '$.eventRecordHeader.Cause.SubCause.SubError' ) AS > subError, TO_TIMESTAMP_LTZ(cast(JSON_QUERY(message, > '$.eventRecordHeader.StartTime') as bigint)/1000, 3) AS eventTime, > proctime() as proctime from kafkaJsonSource", > > *Query 2:* > > select count(case when result1=1 then 1 else null end) > failed_result,count(case when result1=0 then 1 else null end) > successful_result,count(case when errorCode like '4%' then 1 else null end) > err_starts_4,count(case when errorCode like '5%' then 1 else null end) > err_starts_5,count(case when errorCode like '6%' then 1 else null end) > err_starts_6,count(case when subCause is not null then 1 else null end) > has_sub_cause,count(case when subProtocol='DNS' then 1 else null end) > protocol_dns, count(case when subProtocol='Diameter' then 1 else null end) > protocol_diameter, count(case when (subProtocol='Diameter' and subError > like '3%') then 1 else null end) protocol_diameter_err_starts_3,count(case > when (subProtocol='Diameter' and subError like '4%') then 1 else null end) > protocol_diameter_err_starts_4,count(case when (subProtocol='Diameter' and > subError like '5%') then 1 else null end) protocol_diameter_err_starts_5 > FROM TABLE(TUMBLE(TABLE filter_transformed, DESCRIPTOR(proctime), INTERVAL > '1' SECOND)) GROUP BY window_start, window_end; > > Please someone let use know, if there is some better way to do this . > > -- > Regards > Soumen Choudhury > Cell : +91865316168 > mail to : sou....@gmail.com >