We have a requirement of parsing a very complex json (size around 25 kb per
event) event with a predefined schema (nested schema, with multiple schema
files ) and create a temporary table and from temp table we have to apply
some case statement based some fields( eg. to find out success, failure
count , status code ) and do a aggregation in 1 sec interval.

We have tried with inbuilt *JSON_VALUE* function to retrieve some field
value and then apply the case statement, but as I am using JSON_VALUE more
than 5/6 times, the application is performing very slow.

For some other filtering use case we are able to receive more that 1600
event/sec, but for this case we are only receiving around 300 event/sec for
1 core .

Below is the query example:

*Query 1:*

"select cast(JSON_QUERY(message, '$.eventRecordHeader.Result'), bigint) AS
result1, JSON_QUERY(message, '$.eventRecordHeader.Cause.ErrorCode' ) AS
errorCode, JSON_QUERY(message, '$.eventRecordHeader.Cause.SubCause' ) AS
subCause, JSON_QUERY(message,
'$.eventRecordHeader.Cause.SubCause.SubProtocol' ) AS subProtocol,
JSON_QUERY(message, '$.eventRecordHeader.Cause.SubCause.SubError' ) AS
subError, TO_TIMESTAMP_LTZ(cast(JSON_QUERY(message,
'$.eventRecordHeader.StartTime') as bigint)/1000, 3) AS eventTime,
proctime() as proctime from kafkaJsonSource",

*Query 2:*

select count(case when result1=1 then 1 else null end)
failed_result,count(case when result1=0 then 1 else null end)
successful_result,count(case when errorCode like '4%' then 1 else null end)
err_starts_4,count(case when errorCode like '5%' then 1 else null end)
err_starts_5,count(case when errorCode like '6%' then 1 else null end)
err_starts_6,count(case when subCause is not null then 1 else null end)
has_sub_cause,count(case when subProtocol='DNS' then 1 else null end)
protocol_dns, count(case when subProtocol='Diameter' then 1 else null end)
protocol_diameter, count(case when (subProtocol='Diameter' and subError
like '3%') then 1 else null end) protocol_diameter_err_starts_3,count(case
when (subProtocol='Diameter' and subError like '4%') then 1 else null end)
protocol_diameter_err_starts_4,count(case when (subProtocol='Diameter' and
subError like '5%') then 1 else null end) protocol_diameter_err_starts_5
FROM TABLE(TUMBLE(TABLE filter_transformed, DESCRIPTOR(proctime), INTERVAL
'1' SECOND)) GROUP BY window_start, window_end;

Please someone let use know, if there is some better way to do this .

-- 
Regards
Soumen Choudhury
Cell : +91865316168
mail to : sou....@gmail.com

Reply via email to