I imported pyflink.common.types.Row and used it as Shuiqiang suggested but
now Java throws a memory exception:

Caused by: TimerException{java.lang.OutOfMemoryError: Java heap space}
> ... 11 more
> Caused by: java.lang.OutOfMemoryError: Java heap space
> at
> org.apache.flink.table.runtime.util.SegmentsUtil.allocateReuseChars(SegmentsUtil.java:91)
> at
> org.apache.flink.table.runtime.util.StringUtf8Utils.decodeUTF8(StringUtf8Utils.java:127)
> at
> org.apache.flink.table.runtime.typeutils.serializers.python.StringSerializer.deserialize(StringSerializer.java:90)
> at
> org.apache.flink.table.runtime.typeutils.serializers.python.StringSerializer.deserialize(StringSerializer.java:41)
> at
> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:213)
> at
> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58)
> at
> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:213)
> at
> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58)
> at
> org.apache.flink.streaming.api.operators.python.PythonKeyedProcessOperator.emitResult(PythonKeyedProcessOperator.java:253)
> at
> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.emitResults(AbstractPythonFunctionOperator.java:266)
> at
> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.invokeFinishBundle(AbstractPythonFunctionOperator.java:293)
> at
> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.checkInvokeFinishBundleByTime(AbstractPythonFunctionOperator.java:285)
> at
> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.lambda$open$0(AbstractPythonFunctionOperator.java:134)
> at
> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator$$Lambda$670/579781231.onProcessingTime(Unknown
> Source)
> at
> org.apache.flink.streaming.runtime.tasks.StreamTask.invokeProcessingTimeCallback(StreamTask.java:1211)
> at
> org.apache.flink.streaming.runtime.tasks.StreamTask.lambda$null$17(StreamTask.java:1202)
> at
> org.apache.flink.streaming.runtime.tasks.StreamTask$$Lambda$844/2129217743.run(Unknown
> Source)
>

Regards

On Fri, Jan 15, 2021 at 4:00 AM Xingbo Huang <hxbks...@gmail.com> wrote:

> Hi meneldor,
>
> I guess Shuiqiang is not using the pyflink 1.12.0 to develop the example.
> The signature of the `process_element` method has been changed in the new
> version[1]. In pyflink 1.12.0, you can use `collector`.collect to send out
> your results.
>
> [1] https://issues.apache.org/jira/browse/FLINK-20647
>
> Best,
> Xingbo
>
> meneldor <menel...@gmail.com> 于2021年1月15日周五 上午1:20写道:
>
>> Thank you for the answer Shuiqiang!
>> Im using the last apache-flink version:
>>
>>> Requirement already up-to-date: apache-flink in
>>> ./venv/lib/python3.7/site-packages (1.12.0)
>>
>> however the method signature is using a collector:
>>
>> [image: image.png]
>>  Im using the *setup-pyflink-virtual-env.sh* shell script from the
>> docs(which uses pip).
>>
>> Regards
>>
>> On Thu, Jan 14, 2021 at 6:47 PM Shuiqiang Chen <acqua....@gmail.com>
>> wrote:
>>
>>> Hi meneldor,
>>>
>>> The main cause of the error is that there is a bug in
>>> `ctx.timer_service().current_watermark()`. At the beginning the stream,
>>> when the first record come into the KeyedProcessFunction.process_element()
>>> , the current_watermark will be the Long.MIN_VALUE at Java side, while at
>>> the Python side, it becomes LONG.MAX_VALUE which is 9223372036854775807.
>>>
>>> >>> ctx.timer_service().register_event_time_timer(current_watermark + 1500)
>>>
>>> Here, 9223372036854775807 + 1500 is 9223372036854777307 which will be
>>> automatically converted to a long interger in python but will cause Long
>>> value overflow in Java when deserializing the registered timer value. I
>>> will craete a issue to fix the bug.
>>>
>>> Let’s return to your initial question, at PyFlink you could create a Row
>>> Type data as bellow:
>>>
>>> >>> row_data = Row(id=‘my id’, data=’some data’, timestamp=1111)
>>>
>>> And I wonder which release version of flink the code snippet you
>>> provided based on? The latest API for
>>> KeyedProcessFunction.process_element() and KeyedProcessFunction.on_timer()
>>> will not provid a `collector` to collect output data but use `yield` which
>>> is a more pythonic approach.
>>>
>>> Please refer to the following code:
>>>
>>> def keyed_process_function_example():
>>>     env = StreamExecutionEnvironment.get_execution_environment()
>>>     env.set_parallelism(1)
>>>     env.get_config().set_auto_watermark_interval(2000)
>>>     env.set_stream_time_characteristic(TimeCharacteristic.EventTime)
>>>     data_stream = env.from_collection([(1, 'hello', '1603708211000'),
>>>                                        (2, 'hi', '1603708224000'),
>>>                                        (3, 'hello', '1603708226000'),
>>>                                        (4, 'hi', '1603708289000')],
>>>                                       type_info=Types.ROW([Types.INT(), 
>>> Types.STRING(), Types.STRING()]))
>>>
>>>     class MyTimestampAssigner(TimestampAssigner):
>>>
>>>         def extract_timestamp(self, value, record_timestamp) -> int:
>>>             return int(value[2])
>>>
>>>     class MyProcessFunction(KeyedProcessFunction):
>>>
>>>         def process_element(self, value, ctx: 
>>> 'KeyedProcessFunction.Context'):
>>>             yield Row(id=ctx.get_current_key()[1], data='some_string', 
>>> timestamp=11111111)
>>>             # current_watermark = ctx.timer_service().current_watermark()
>>>             ctx.timer_service().register_event_time_timer(ctx.timestamp() + 
>>> 1500)
>>>
>>>         def on_timer(self, timestamp: int, ctx: 
>>> 'KeyedProcessFunction.OnTimerContext'):
>>>             yield Row(id=ctx.get_current_key()[1], data='current on timer 
>>> timestamp: ' + str(timestamp),
>>>                       timestamp=timestamp)
>>>
>>>     output_type_info = Types.ROW_NAMED(['id', 'data', 'timestamp'], 
>>> [Types.STRING(), Types.STRING(), Types.INT()])
>>>     watermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \
>>>         .with_timestamp_assigner(MyTimestampAssigner())
>>>     data_stream.assign_timestamps_and_watermarks(watermark_strategy) \
>>>         .key_by(lambda x: (x[0], x[1]), 
>>> key_type_info=Types.TUPLE([Types.INT(), Types.STRING()])) \
>>>         .process(MyProcessFunction(), output_type=output_type_info).print()
>>>     env.execute('test keyed process function')
>>>
>>>
>>> Best,
>>> Shuiqiang
>>>
>>>
>>>
>>>
>>>
>>> meneldor <menel...@gmail.com> 于2021年1月14日周四 下午10:45写道:
>>>
>>>> Hello,
>>>>
>>>> What is the correct way to use Python dict's as ROW type in pyflink? Im
>>>> trying this:
>>>>
>>>> output_type_info = Types.ROW_NAMED(['id', 'data', 'timestamp' ],
>>>>                                      [Types.STRING(), Types.STRING(), 
>>>> Types.LONG() ])
>>>>
>>>> class MyProcessFunction(KeyedProcessFunction):
>>>>     def process_element(self, value, ctx: 'KeyedProcessFunction.Context', 
>>>> out: Collector):
>>>>         result = {"id": ctx.get_current_key()[0], "data": "some_string", 
>>>> "timestamp": 111111111111}
>>>>         out.collect(result)
>>>>         current_watermark = ctx.timer_service().current_watermark()
>>>>         ctx.timer_service().register_event_time_timer(current_watermark + 
>>>> 1500)
>>>>
>>>>     def on_timer(self, timestamp, ctx: 
>>>> 'KeyedProcessFunction.OnTimerContext', out: 'Collector'):
>>>>         logging.info(timestamp)
>>>>         out.collect("On timer timestamp: " + str(timestamp))
>>>>
>>>> ds.key_by(MyKeySelector(), key_type_info=Types.TUPLE([Types.STRING(), 
>>>> Types.STRING()])) \
>>>>    .process(MyProcessFunction(), output_type=output_type_info)
>>>>
>>>>
>>>> I just hardcoded the values in MyProcessFunction to be sure that the
>>>> input data doesnt mess the fields. So the data is correct but PyFlink trews
>>>> an exception:
>>>>
>>>> at java.io.DataInputStream.readUnsignedByte(DataInputStream.java:290)
>>>>> at
>>>>> org.apache.flink.api.java.typeutils.runtime.MaskUtils.readIntoMask(MaskUtils.java:73)
>>>>> at
>>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:202)
>>>>> at
>>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58)
>>>>> at
>>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:213)
>>>>> at
>>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58)
>>>>> at
>>>>> org.apache.flink.streaming.api.operators.python.PythonKeyedProcessOperator.emitResult(PythonKeyedProcessOperator.java:253)
>>>>> at
>>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.emitResults(AbstractPythonFunctionOperator.java:266)
>>>>> at
>>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.invokeFinishBundle(AbstractPythonFunctionOperator.java:293)
>>>>> at
>>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.checkInvokeFinishBundleByTime(AbstractPythonFunctionOperator.java:285)
>>>>> at
>>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.lambda$open$0(AbstractPythonFunctionOperator.java:134)
>>>>> at
>>>>> org.apache.flink.streaming.runtime.tasks.StreamTask.invokeProcessingTimeCallback(StreamTask.java:1211)
>>>>> ... 10 more
>>>>
>>>> However it works with primitive types like Types.STRING(). According to 
>>>> the documentation the ROW type corresponds to the python's dict type.
>>>>
>>>>
>>>> Regards
>>>>
>>>>

Reply via email to