Hi meneldor,

I guess Shuiqiang is not using the pyflink 1.12.0 to develop the example.
The signature of the `process_element` method has been changed in the new
version[1]. In pyflink 1.12.0, you can use `collector`.collect to send out
your results.

[1] https://issues.apache.org/jira/browse/FLINK-20647

Best,
Xingbo

meneldor <menel...@gmail.com> 于2021年1月15日周五 上午1:20写道:

> Thank you for the answer Shuiqiang!
> Im using the last apache-flink version:
>
>> Requirement already up-to-date: apache-flink in
>> ./venv/lib/python3.7/site-packages (1.12.0)
>
> however the method signature is using a collector:
>
> [image: image.png]
>  Im using the *setup-pyflink-virtual-env.sh* shell script from the
> docs(which uses pip).
>
> Regards
>
> On Thu, Jan 14, 2021 at 6:47 PM Shuiqiang Chen <acqua....@gmail.com>
> wrote:
>
>> Hi meneldor,
>>
>> The main cause of the error is that there is a bug in
>> `ctx.timer_service().current_watermark()`. At the beginning the stream,
>> when the first record come into the KeyedProcessFunction.process_element()
>> , the current_watermark will be the Long.MIN_VALUE at Java side, while at
>> the Python side, it becomes LONG.MAX_VALUE which is 9223372036854775807.
>>
>> >>> ctx.timer_service().register_event_time_timer(current_watermark + 1500)
>>
>> Here, 9223372036854775807 + 1500 is 9223372036854777307 which will be
>> automatically converted to a long interger in python but will cause Long
>> value overflow in Java when deserializing the registered timer value. I
>> will craete a issue to fix the bug.
>>
>> Let’s return to your initial question, at PyFlink you could create a Row
>> Type data as bellow:
>>
>> >>> row_data = Row(id=‘my id’, data=’some data’, timestamp=1111)
>>
>> And I wonder which release version of flink the code snippet you provided
>> based on? The latest API for KeyedProcessFunction.process_element() and
>> KeyedProcessFunction.on_timer() will not provid a `collector` to collect
>> output data but use `yield` which is a more pythonic approach.
>>
>> Please refer to the following code:
>>
>> def keyed_process_function_example():
>>     env = StreamExecutionEnvironment.get_execution_environment()
>>     env.set_parallelism(1)
>>     env.get_config().set_auto_watermark_interval(2000)
>>     env.set_stream_time_characteristic(TimeCharacteristic.EventTime)
>>     data_stream = env.from_collection([(1, 'hello', '1603708211000'),
>>                                        (2, 'hi', '1603708224000'),
>>                                        (3, 'hello', '1603708226000'),
>>                                        (4, 'hi', '1603708289000')],
>>                                       type_info=Types.ROW([Types.INT(), 
>> Types.STRING(), Types.STRING()]))
>>
>>     class MyTimestampAssigner(TimestampAssigner):
>>
>>         def extract_timestamp(self, value, record_timestamp) -> int:
>>             return int(value[2])
>>
>>     class MyProcessFunction(KeyedProcessFunction):
>>
>>         def process_element(self, value, ctx: 
>> 'KeyedProcessFunction.Context'):
>>             yield Row(id=ctx.get_current_key()[1], data='some_string', 
>> timestamp=11111111)
>>             # current_watermark = ctx.timer_service().current_watermark()
>>             ctx.timer_service().register_event_time_timer(ctx.timestamp() + 
>> 1500)
>>
>>         def on_timer(self, timestamp: int, ctx: 
>> 'KeyedProcessFunction.OnTimerContext'):
>>             yield Row(id=ctx.get_current_key()[1], data='current on timer 
>> timestamp: ' + str(timestamp),
>>                       timestamp=timestamp)
>>
>>     output_type_info = Types.ROW_NAMED(['id', 'data', 'timestamp'], 
>> [Types.STRING(), Types.STRING(), Types.INT()])
>>     watermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \
>>         .with_timestamp_assigner(MyTimestampAssigner())
>>     data_stream.assign_timestamps_and_watermarks(watermark_strategy) \
>>         .key_by(lambda x: (x[0], x[1]), 
>> key_type_info=Types.TUPLE([Types.INT(), Types.STRING()])) \
>>         .process(MyProcessFunction(), output_type=output_type_info).print()
>>     env.execute('test keyed process function')
>>
>>
>> Best,
>> Shuiqiang
>>
>>
>>
>>
>>
>> meneldor <menel...@gmail.com> 于2021年1月14日周四 下午10:45写道:
>>
>>> Hello,
>>>
>>> What is the correct way to use Python dict's as ROW type in pyflink? Im
>>> trying this:
>>>
>>> output_type_info = Types.ROW_NAMED(['id', 'data', 'timestamp' ],
>>>                                      [Types.STRING(), Types.STRING(), 
>>> Types.LONG() ])
>>>
>>> class MyProcessFunction(KeyedProcessFunction):
>>>     def process_element(self, value, ctx: 'KeyedProcessFunction.Context', 
>>> out: Collector):
>>>         result = {"id": ctx.get_current_key()[0], "data": "some_string", 
>>> "timestamp": 111111111111}
>>>         out.collect(result)
>>>         current_watermark = ctx.timer_service().current_watermark()
>>>         ctx.timer_service().register_event_time_timer(current_watermark + 
>>> 1500)
>>>
>>>     def on_timer(self, timestamp, ctx: 
>>> 'KeyedProcessFunction.OnTimerContext', out: 'Collector'):
>>>         logging.info(timestamp)
>>>         out.collect("On timer timestamp: " + str(timestamp))
>>>
>>> ds.key_by(MyKeySelector(), key_type_info=Types.TUPLE([Types.STRING(), 
>>> Types.STRING()])) \
>>>    .process(MyProcessFunction(), output_type=output_type_info)
>>>
>>>
>>> I just hardcoded the values in MyProcessFunction to be sure that the
>>> input data doesnt mess the fields. So the data is correct but PyFlink trews
>>> an exception:
>>>
>>> at java.io.DataInputStream.readUnsignedByte(DataInputStream.java:290)
>>>> at
>>>> org.apache.flink.api.java.typeutils.runtime.MaskUtils.readIntoMask(MaskUtils.java:73)
>>>> at
>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:202)
>>>> at
>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58)
>>>> at
>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:213)
>>>> at
>>>> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58)
>>>> at
>>>> org.apache.flink.streaming.api.operators.python.PythonKeyedProcessOperator.emitResult(PythonKeyedProcessOperator.java:253)
>>>> at
>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.emitResults(AbstractPythonFunctionOperator.java:266)
>>>> at
>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.invokeFinishBundle(AbstractPythonFunctionOperator.java:293)
>>>> at
>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.checkInvokeFinishBundleByTime(AbstractPythonFunctionOperator.java:285)
>>>> at
>>>> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.lambda$open$0(AbstractPythonFunctionOperator.java:134)
>>>> at
>>>> org.apache.flink.streaming.runtime.tasks.StreamTask.invokeProcessingTimeCallback(StreamTask.java:1211)
>>>> ... 10 more
>>>
>>> However it works with primitive types like Types.STRING(). According to the 
>>> documentation the ROW type corresponds to the python's dict type.
>>>
>>>
>>> Regards
>>>
>>>

Reply via email to