Yes, that could definitely cause this. You should probably avoid using
these flink-internal shaded classes and ship your own versions (not shaded).
Best,
Jan
On 11/16/20 3:22 PM, Flavio Pompermaier wrote:
Thank you Jan for your valuable feedback.
Could it be that I should not use import shaded-jackson classes in my
user code?
For example import
org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.ObjectMapper?
Bets,
Flavio
On Mon, Nov 16, 2020 at 3:15 PM Jan Lukavský <je...@seznam.cz
<mailto:je...@seznam.cz>> wrote:
Hi Flavio,
when I encountered quite similar problem that you describe, it was
related to a static storage located in class that was loaded
"parent-first". In my case it was it was in java.lang.ClassValue,
but it might (and probably will be) different in your case. The
problem is that if user-code registers something in some (static)
storage located in class loaded with parent (TaskTracker)
classloader, then its associated classes will never be GC'd and
Metaspace will grow. A good starting point would be not to focus
on biggest consumers of heap (in general), but to look at where
the 15k objects of type Class are referenced from. That might help
you figure this out. I'm not sure if there is something that can
be done in general to prevent this type of leaks. That would be
probably question on dev@ mailing list.
Best,
Jan
On 11/16/20 2:27 PM, Flavio Pompermaier wrote:
Hello everybody,
I was writing this email when a similar thread on this mailing
list appeared..
The difference is that the other problem seems to be related
with Flink 1.10 on YARN and does not output anything helpful in
debugging the cause of the problem.
Indeed, in my use case I use Flink 1.11.0 and Flink on a
standalone session cluster (the job is submitted to the cluster
using the CLI client).
The problem arises when I submit the same job for about 20 times
(this number unfortunately is not deterministic and can change a
little bit). The error reported by the Task Executor is related
to the ever growing Metaspace..the error seems to be pretty
detailed [1].
I found the same issue in some previous threads on this mailing
list and I've tried to figure it out the cause of the problem.
The issue is that looking at the objects allocated I don't really
get an idea of the source of the problem because the type of
objects that are consuming the memory are of general purpose
(i.e. Bytes, Integers and Strings)...these are my "top" memory
consumers if looking at the output of jmap -histo <PID>:
At run 0:
num #instances #bytes class name (module)
-------------------------------------------------------
1: 46238 13224056 [B (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
2: 3736 6536672 [I (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
3: 38081 913944 java.lang.String
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
4: 26 852384
[Lakka.dispatch.forkjoin.ForkJoinTask;
5: 7146 844984 java.lang.Class
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
At run 1:
1: 77.608 25.317.496 [B (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
2: 7.004 9.088.360 [I (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
3: 15.814 1.887.256 java.lang.Class
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
4: 67.381 1.617.144 java.lang.String
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
5: 3.906 1.422.960 [Ljava.util.HashMap$Node;
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
At run 6:
1: 81.408 25.375.400 [B (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
2: 12.479 7.249.392 [I (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
3: 29.090 3.496.168 java.lang.Class
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
4: 4.347 2.813.416 [Ljava.util.HashMap$Node;
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
5: 71.584 1.718.016 java.lang.String
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
At run 8:
1: 985.979 127.193.256 [B (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
2: 35.400 13.702.112 [I (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
3: 260.387 6.249.288 java.lang.String
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
4: 148.836 5.953.440
java.util.HashMap$KeyIterator (java.base@11.0.9.1
<mailto:java.base@11.0.9.1>)
5: 17.641 5.222.344 [Ljava.util.HashMap$Node;
(java.base@11.0.9.1 <mailto:java.base@11.0.9.1>)
Thanks in advance for any help,
Flavio
[1]
--------------------------------------------------------------------------------------------------
java.lang.OutOfMemoryError: Metaspace. The metaspace
out-of-memory error has occurred. This can mean two things:
either the job requires a larger size of JVM metaspace to load
classes or there is a class loading leak. In the first case
'taskmanager.memory.jvm-metaspace.size' configuration option
should be increased. If the error persists (usually in cluster
after several job (re-)submissions) then there is probably a
class loading leak in user code or some of its dependencies which
has to be investigated and fixed. The task executor has to be
shutdown...
at java.lang.ClassLoader.defineClass1(Native Method) ~[?:?]
at
java.lang.ClassLoader.defineClass(ClassLoader.java:1017) ~[?:?]
at
java.security.SecureClassLoader.defineClass(SecureClassLoader.java:174)
~[?:?]
at
java.net.URLClassLoader.defineClass(URLClassLoader.java:550) ~[?:?]
at java.net.URLClassLoader$1.run(URLClassLoader.java:458)
~[?:?]
at java.net.URLClassLoader$1.run(URLClassLoader.java:452)
~[?:?]
at java.security.AccessController.doPrivileged(Native
Method) ~[?:?]
at
java.net.URLClassLoader.findClass(URLClassLoader.java:451) ~[?:?]
at
org.apache.flink.util.ChildFirstClassLoader.loadClassWithoutExceptionHandling(ChildFirstClassLoader.java:71)
~[flink-dist_2.12-1.11.0.jar:1.11.0]
at
org.apache.flink.util.FlinkUserCodeClassLoader.loadClass(FlinkUserCodeClassLoader.java:48)
[flink-dist_2.12-1.11.0.jar:1.11.0]
at java.lang.ClassLoader.loadClass(ClassLoader.java:522)
[?:?]