Hi, Caching could have been a solution. Another one is using a “group reduce” by day, but for that I need to make the “applyComplexNonDistributedTreatment” serializable, and that’s not an easy task.
1 & 2 - The OOM in my current test occurs in the 8th iteration (7 were successful). In this current test, only the first day have data, in others days the filter() returns an empty dataset. 3 – The OOM is in a task manager, during the “select” phase. Digging further, I see it’s a PermGen OOM occurring during deserialization, not a heap one. 2016-12-08 17:38:27,835 ERROR org.apache.flink.runtime.taskmanager.Task - Task execution failed. java.lang.OutOfMemoryError: PermGen space at sun.misc.Unsafe.defineClass(Native Method) at sun.reflect.ClassDefiner.defineClass(ClassDefiner.java:63) at sun.reflect.MethodAccessorGenerator$1.run(MethodAccessorGenerator.java:399) at sun.reflect.MethodAccessorGenerator$1.run(MethodAccessorGenerator.java:396) at java.security.AccessController.doPrivileged(Native Method) at sun.reflect.MethodAccessorGenerator.generate(MethodAccessorGenerator.java:395) at sun.reflect.MethodAccessorGenerator.generateSerializationConstructor(MethodAccessorGenerator.java:113) at sun.reflect.ReflectionFactory.newConstructorForSerialization(ReflectionFactory.java:331) at java.io.ObjectStreamClass.getSerializableConstructor(ObjectStreamClass.java:1376) at java.io.ObjectStreamClass.access$1500(ObjectStreamClass.java:72) at java.io.ObjectStreamClass$2.run(ObjectStreamClass.java:493) at java.io.ObjectStreamClass$2.run(ObjectStreamClass.java:468) at java.security.AccessController.doPrivileged(Native Method) at java.io.ObjectStreamClass.<init>(ObjectStreamClass.java:468) at java.io.ObjectStreamClass.lookup(ObjectStreamClass.java:365) at java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:602) at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1622) at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1517) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1771) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990) at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915) at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798) at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350) at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370) at org.apache.hive.hcatalog.common.HCatUtil.deserialize(HCatUtil.java:117) at org.apache.hive.hcatalog.mapreduce.HCatSplit.readFields(HCatSplit.java:139) at org.apache.flink.api.java.hadoop.mapreduce.wrapper.HadoopInputSplit.readObject(HadoopInputSplit.java:102) De : Fabian Hueske [mailto:fhue...@gmail.com] Envoyé : vendredi 9 décembre 2016 10:51 À : user@flink.apache.org Objet : Re: OutOfMemory when looping on dataset filter Hi Arnaud, Flink does not cache data at the moment. What happens is that for every day, the complete program is executed, i.e., also the program that computes wholeSet. Each execution should be independent from each other and all temporary data be cleaned up. Since Flink executes programs in a pipelined (or streaming) fashion, wholeSet is not kept in memory. There is also no manual way to pin a DataSet in memory at the moment. One think you could try is to push the day filter as close to the original source as possible. This would reduce the size of intermediate results. In general, Flink's DataSet API is implemented to work on managed memory. The most common reason for OOMs are user function that collect data on the heap. However, this should not accumulate and be cleaned up after a job finished. Collect can be a bit fragile here, because it moves all data to the client process. I also have a few questions: 1. After how many iterations of the for loop is the OOM happening. 2. Is the data for all days of the same size? 3. Is the OOM happening in Flink or in the client process which fetches the result? Best, Fabian 2016-12-09 10:35 GMT+01:00 LINZ, Arnaud <al...@bouyguestelecom.fr<mailto:al...@bouyguestelecom.fr>>: Hello, I have a non-distributed treatment to apply to a DataSet of timed events, one day after another in a flink batch. My algorithm is: // wholeSet is too big to fit in RAM with a collect(), so we cut it in pieces DataSet wholeSet = [Select WholeSet]; for (day 1 to 31) { List<> dayData = wholeSet.filter(day).collect(); applyComplexNonDistributedTreatment(dayData); } Even if each day can perfectly fit in RAM (I’ve made a test where only the first day have data), I quickly get a OOM in a task manager at one point in the loop, so I guess that the “wholeSet” si keeped several times times in Ram. Two questions : 1) Is there a better way of handling it where the “select wholeset” is made only once ? 2) Even when the “select wholeset” is made at each iteration, how can I completely remove the old set so that I don’t get an OOM ? Thanks, Arnaud ________________________________ L'intégrité de ce message n'étant pas assurée sur internet, la société expéditrice ne peut être tenue responsable de son contenu ni de ses pièces jointes. Toute utilisation ou diffusion non autorisée est interdite. Si vous n'êtes pas destinataire de ce message, merci de le détruire et d'avertir l'expéditeur. The integrity of this message cannot be guaranteed on the Internet. The company that sent this message cannot therefore be held liable for its content nor attachments. Any unauthorized use or dissemination is prohibited. If you are not the intended recipient of this message, then please delete it and notify the sender.