Hello, I have a non-distributed treatment to apply to a DataSet of timed events, one day after another in a flink batch. My algorithm is:
// wholeSet is too big to fit in RAM with a collect(), so we cut it in pieces DataSet wholeSet = [Select WholeSet]; for (day 1 to 31) { List<> dayData = wholeSet.filter(day).collect(); applyComplexNonDistributedTreatment(dayData); } Even if each day can perfectly fit in RAM (I’ve made a test where only the first day have data), I quickly get a OOM in a task manager at one point in the loop, so I guess that the “wholeSet” si keeped several times times in Ram. Two questions : 1) Is there a better way of handling it where the “select wholeset” is made only once ? 2) Even when the “select wholeset” is made at each iteration, how can I completely remove the old set so that I don’t get an OOM ? Thanks, Arnaud ________________________________ L'intégrité de ce message n'étant pas assurée sur internet, la société expéditrice ne peut être tenue responsable de son contenu ni de ses pièces jointes. Toute utilisation ou diffusion non autorisée est interdite. Si vous n'êtes pas destinataire de ce message, merci de le détruire et d'avertir l'expéditeur. The integrity of this message cannot be guaranteed on the Internet. The company that sent this message cannot therefore be held liable for its content nor attachments. Any unauthorized use or dissemination is prohibited. If you are not the intended recipient of this message, then please delete it and notify the sender.