Thank you for suggestions, all my applications will run in yarn, I want to use
jobgraph model in flink, and resort to runtime stack in twitter heron.
Some details need to be considered later. I am further researching flink code
now.
------------------------------------------------------------------发件人:Stephan
Ewen <se...@apache.org>发送时间:2015年8月3日(星期一) 22:17收件人:user
<user@flink.apache.org>,wangzhijiang999 <wangzhijiang...@aliyun.com>主 题:Re:
答复:thread model issue in TaskManager - Communication to the TaskManager, or
directly to the JobManager - Network stack for shuffles to exchange data with
other processes (as exchanges go streaming and through memory and not files) -
Memory Manager - I/O managerThat is almost a full TaskManager by itself. Using
a TaskManager per job and task is then super close to that model directly.What
would help is to have a mode where these TaskManagers are spawned as needed, by
the JobManager, using YARN or Mesos. This would then be very close to the
Hadoop2/YARN/Tez model, which is a good isolation model.What do you think? In
order to spawn a process that executes as task as a process, that process would
need the following:On Mon, Aug 3, 2015 at 4:12 AM, wangzhijiang999
<wangzhijiang...@aliyun.com> wrote:Hi Stephan,Fabian Thank you for your
reply! I will run the flink on yarn actually . It is feasible to isolate
different tasks in one job by starting new yarn session. And it means every job
will have a yarn seesion, and one taskManager just has one slot. If I want to
run all jobs in one yarn cluster in pipelined mode, and one taskManager can run
many tasks, another way is to use process mode, that means every task will be a
process not thread, so isolation is natural. Do you think it is feasible to
modify flink runtime to realize this? Or if we want to do that, are there any
suggestions? Thank
you!------------------------------------------------------------------发件人:Stephan
Ewen <se...@apache.org>发送时间:2015年8月3日(星期一) 00:36收件人:user
<user@flink.apache.org>抄 送:wangzhijiang999 <wangzhijiang...@aliyun.com>主 题:Re:
thread model issue in TaskManagerHere are some additional things you can do: -
For isolation between parallel tasks (within a job), start your YARN job such
that each TaskManager has one slot, and start many TaskManagers. That is a bit
less efficient (but not much) than fewer TaskManagers with more slots. (*) -
If you need to isolate successor tasks in a job against predecessor tasks, you
can select "batch" execution mode. By default, the system uses "pipelined"
execution mode. In a MapReduce case, this means that mappers and reducers run
concurrently. With "batch" mode, reducers run only after all mappers
finished.Greetings,Stephan(*) The reason why multiple slots in one TaskManager
are more efficient is that TaskManagers multiplex multiple data exchanges of a
shuffle through a TCP connection, reducing per-exchange overhead and usually
increasing throughput.As Fabian suggested, YARN is a good way to go for
isolation (it actually isolates more than a JVM, which is very nice).On Thu,
Jul 30, 2015 at 12:10 PM, Fabian Hueske <fhue...@gmail.com> wrote:Hi,it is
currently not possible to isolate tasks that consume a lot of JVM heap memory
and schedule them to a specific slot (or TaskManager).If you operate in a YARN
setup, you can isolate different jobs from each other by starting a new YARN
session for each job, but tasks within the same job cannot be isolated from
each other right now.Cheers, Fabian2015-07-30 4:02 GMT+02:00 wangzhijiang999
<wangzhijiang...@aliyun.com>:As I know, flink uses thread model in TaskManager,
that means one taskmanager process may run many different operator threads,and
these threads will compete the memory of the process. I know that flink has
memoryManage component in each taskManager, and it will control the
localBufferPool of InputGate, ResultPartition for each task,but if UDF consume
much memory, it will use jvm heap memory, so it can not be controlled by flink.
If I use flink as common platform, some users will consume much memory in UDF,
and it may influence other threads in the process, especially for OOM. I know
that it has sharedslot or isolated slot properties , but it just limit the task
schedule in one taskmanager, can i schedule task in separate taskmanger if i
consume much memory and donot want to influence other tasks. Or are there any
suggestions for the issue of thread model. As I know spark is also thread
model, but hadoop2 use process model.Thank you for any suggestions in advance!