This might have to do with https://github.com/apache/beam/pull/11670. +Lukasz Cwik <lc...@google.com> was there a subsequent fix that was not included in the release ?
On Thu, May 28, 2020 at 10:29 AM Kyle Weaver <kcwea...@google.com> wrote: > What source are you using? > > On Thu, May 28, 2020 at 1:24 PM Alexey Romanenko <aromanenko....@gmail.com> > wrote: > >> Hello, >> >> I’m trying to run a Cross-Language pipeline (Beam 2.21, Java pipeline >> with an external Python transform) with a PROCESS SDK Harness and Spark >> Portable Runner but it fails. >> To do that I have a running Spark Runner Job Server (Spark local) and >> standalone Expansion Service (Python) which contains a code of my Python >> transform that should be called from main Java pipeline. >> >> Once job has been submitted on Job Server and started running, it fails >> with this error: >> >> 20/05/28 18:55:12 INFO org.apache.beam.runners.spark.SparkJobInvoker: >> Invoking job >> classificationpipeline-aromanenko-0528165508-5a8f57b9_63b11806-bed9-48e5-a9d9-314dbc93e719 >> 20/05/28 18:55:12 INFO >> org.apache.beam.runners.fnexecution.jobsubmission.JobInvocation: Starting >> job invocation >> classificationpipeline-aromanenko-0528165508-5a8f57b9_63b11806-bed9-48e5-a9d9-314dbc93e719 >> 20/05/28 18:55:12 ERROR >> org.apache.beam.runners.fnexecution.jobsubmission.JobInvocation: Error >> during job invocation >> classificationpipeline-aromanenko-0528165508-5a8f57b9_63b11806-bed9-48e5-a9d9-314dbc93e719. >> >> *java.lang.IllegalArgumentException: GreedyPipelineFuser requires all >> root nodes to be runner-implemented beam:transform:impulse:v1 or >> beam:transform:read:v1 primitives, but >> transform Create.Values/Read(CreateSource) executes in environment >> Optional[urn: "beam:env:docker:v1"*payload: >> "\n\033apache/beam_java_sdk:2.21.0" >> capabilities: "beam:coder:bytes:v1” >> …. >> >> >> Some code snippets of my pipeline that can be helpful. >> >> *Java transform:* >> >> private static final String URN = "ml:genreclassifier:python:v1"; >> >> @Override >> public PCollection<KV<String, String>> expand(PCollection<String> input) { >> PCollection<KV<String, String>> output = >> input.apply( >> "ExternalGenreClassifier", >> External.of(URN, new byte[] {}, options.getExpansionServiceURL()) >> .<KV<String, String>>withOutputType()); >> return output; >> } >> >> >> *expansion_service.py* >> >> @ptransform.PTransform.register_urn('ml:genreclassifier:python:v1', None) >> class GenreClassifier(ptransform.PTransform): >> def __init__(self): >> super(GenreClassifier, self).__init__() >> >> def expand(self, pcoll): >> return pcoll | "GenreClassifier" >> beam.ParDo(_GenreClassifierFn()) >> >> def to_runner_api_parameter(self, unused_context): >> return 'ml:genreclassifier:python:v1', None >> >> @staticmethod >> def from_runner_api_parameter(unused_ptransform, unused_parameter, >> unused_context): >> return GenreClassifier() >> >> >> def main(unused_argv): >> ... >> server = grpc.server(UnboundedThreadPoolExecutor()) >> beam_expansion_api_pb2_grpc.add_ExpansionServiceServicer_to_server( >> expansion_service.ExpansionServiceServicer( >> PipelineOptions.from_dictionary({ >> 'environment_type': 'PROCESS', >> 'environment_config': *'{"command": >> **“/dev**/beam/sdks/python/container/build/target/launcher/darwin_amd64/boot"}'*, >> 'sdk_location': 'container', >> }) >> ), server >> ) >> server.add_insecure_port('localhost:{}'.format(options.port)) >> server.start() >> >> Does anyone have an idea what’s wrong with my setup/pipeline and how to >> fix it? >> >> >>