What source are you using?

On Thu, May 28, 2020 at 1:24 PM Alexey Romanenko <aromanenko....@gmail.com>
wrote:

> Hello,
>
> I’m trying to run a Cross-Language pipeline (Beam 2.21, Java pipeline with
> an external Python transform) with a PROCESS SDK Harness and Spark Portable
> Runner but it fails.
> To do that I have a running Spark Runner Job Server (Spark local) and
> standalone Expansion Service (Python) which contains a code of my Python
> transform that should be called from main Java pipeline.
>
> Once job has been submitted on Job Server and started running, it fails
> with this error:
>
> 20/05/28 18:55:12 INFO org.apache.beam.runners.spark.SparkJobInvoker:
> Invoking job
> classificationpipeline-aromanenko-0528165508-5a8f57b9_63b11806-bed9-48e5-a9d9-314dbc93e719
> 20/05/28 18:55:12 INFO
> org.apache.beam.runners.fnexecution.jobsubmission.JobInvocation: Starting
> job invocation
> classificationpipeline-aromanenko-0528165508-5a8f57b9_63b11806-bed9-48e5-a9d9-314dbc93e719
> 20/05/28 18:55:12 ERROR
> org.apache.beam.runners.fnexecution.jobsubmission.JobInvocation: Error
> during job invocation
> classificationpipeline-aromanenko-0528165508-5a8f57b9_63b11806-bed9-48e5-a9d9-314dbc93e719.
>
> *java.lang.IllegalArgumentException: GreedyPipelineFuser requires all root
> nodes to be runner-implemented beam:transform:impulse:v1 or
> beam:transform:read:v1 primitives, but
> transform Create.Values/Read(CreateSource) executes in environment
> Optional[urn: "beam:env:docker:v1"*payload:
> "\n\033apache/beam_java_sdk:2.21.0"
> capabilities: "beam:coder:bytes:v1”
> ….
>
>
> Some code snippets of my pipeline that can be helpful.
>
> *Java transform:*
>
> private static final String URN = "ml:genreclassifier:python:v1";
>
> @Override
> public PCollection<KV<String, String>> expand(PCollection<String> input) {
>   PCollection<KV<String, String>> output =
>       input.apply(
>           "ExternalGenreClassifier",
>           External.of(URN, new byte[] {}, options.getExpansionServiceURL())
>               .<KV<String, String>>withOutputType());
>   return output;
> }
>
>
> *expansion_service.py*
>
> @ptransform.PTransform.register_urn('ml:genreclassifier:python:v1', None)
> class GenreClassifier(ptransform.PTransform):
>     def __init__(self):
>         super(GenreClassifier, self).__init__()
>
>     def expand(self, pcoll):
>         return pcoll | "GenreClassifier" >> beam.ParDo(_GenreClassifierFn())
>
>     def to_runner_api_parameter(self, unused_context):
>         return 'ml:genreclassifier:python:v1', None
>
>     @staticmethod
>     def from_runner_api_parameter(unused_ptransform, unused_parameter, 
> unused_context):
>         return GenreClassifier()
>
>
> def main(unused_argv):
>     ...
>     server = grpc.server(UnboundedThreadPoolExecutor())
>     beam_expansion_api_pb2_grpc.add_ExpansionServiceServicer_to_server(
>         expansion_service.ExpansionServiceServicer(
>             PipelineOptions.from_dictionary({
>                 'environment_type': 'PROCESS',
>                 'environment_config': *'{"command": 
> **“/dev**/beam/sdks/python/container/build/target/launcher/darwin_amd64/boot"}'*,
>                 'sdk_location': 'container',
>             })
>         ), server
>     )
>     server.add_insecure_port('localhost:{}'.format(options.port))
>     server.start()
>
> Does anyone have an idea what’s wrong with my setup/pipeline and how to
> fix it?
>
>
>

Reply via email to