[This email originated from outside of OSU. Use caution with links and 
attachments.]

A two-year PostDoc position open at the University of Pisa, Italy, to join the 
FINDHR research project on the following research objective:


“Explainable and Fair Ranking Methods in Artificial Intelligence for HR 
Decision Making: advanced eXplainable AI (XAI) paradigms in support of hiring 
decision making algorithms and processes. XAI methods will be designed and 
implemented for post-hoc explanation of fairness-aware ranking algorithms, and 
for explainable-by-design fairness-aware ranking algorithms. A 
multi-disciplinary approach will be taken, including legal, ethical, and 
computational requirements of the designed methods”


Deadline for online applications: Tuesday, 4 April 2023 at 13:00 CEST

Full call for application info: 
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fbandi.unipi.it%2Fpublic%2FBandi%2FDetail%2F3bd897e5-3872-42f9-87a9-03e1b16156b6&data=05%7C01%7Cuai%40engr.oregonstate.edu%7Cb7f3b0001e244ee4b89b08db18c5c1cb%7Cce6d05e13c5e4d6287a84c4a2713c113%7C0%7C0%7C638131009864322326%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=KktP6KWGg5Y3LERJ0a2fJgrupDrxqjuumDOgVSLa2ag%3D&reserved=0
Online applications at 
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpica.cineca.it%2Funipi%2Fass-inf2023-1%2F&data=05%7C01%7Cuai%40engr.oregonstate.edu%7Cb7f3b0001e244ee4b89b08db18c5c1cb%7Cce6d05e13c5e4d6287a84c4a2713c113%7C0%7C0%7C638131009864322326%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=XTnUqIm4qRyTblHoYMtJ%2BGJ0No3r3NE1ZN1%2FxHeyC4k%3D&reserved=0
 (selection code: ass-inf2023-1)

Salary: approximately € 2.850 net per month (for non-Italian citizens the 
non-mandatory health insurance is not included)

Duration: 2 years

The FINDHR Project: Fairness and Intersectional Non-Discrimination in Human 
Recommendation 
(https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffindhr.eu%2F&data=05%7C01%7Cuai%40engr.oregonstate.edu%7Cb7f3b0001e244ee4b89b08db18c5c1cb%7Cce6d05e13c5e4d6287a84c4a2713c113%7C0%7C0%7C638131009864322326%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=vyBu2lV5bjJYU0XIJMhbersZRglKz9FP45mh66YY2k0%3D&reserved=0)
 aims to create new ways to ascertain discrimination risk, produce less biased 
outcomes, and meaningfully incorporate human expertise. Moreover, it aims to 
create procedures for software development, monitoring and training.

The University of Pisa partner of the FINDHR project is the research group KDD 
Lab (the Knowledge Discovery & Data Mining Lab, 
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fkdd.isti.cnr.it%2F&data=05%7C01%7Cuai%40engr.oregonstate.edu%7Cb7f3b0001e244ee4b89b08db18c5c1cb%7Cce6d05e13c5e4d6287a84c4a2713c113%7C0%7C0%7C638131009864322326%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=o8%2FhUmssWsKzD6%2FvKV5dcFndh%2FzvY2aaf6a0iO7NoBM%3D&reserved=0)
 a joint group of ISTI-CNR, Scuola Normale Superiore and Univ. of Pisa, a 
pioneering research group in data science, fairness, and XAI, established in 
1994.

Ideal candidates should hold or be about to obtain a PhD degree in Computer 
Science, Computer Engineering, Mathematics, Physics, Cognitive Sciences or 
related disciplines, and a proven track record of excellent University grades 
and publications in relevant top-tier conferences and journals. Background on 
(some of) the following topics is appreciated: machine learning, deep learning, 
information retrieval, statistical learning, causal reasoning and learning, 
counterfactual reasoning, cognitive models of learning and reasoning, 
human-computer interaction. Excellent written and spoken communication skills 
in English are required.

We are happy if the interested candidates also send us an expression of 
interest, containing the candidate’s CV accompanied by a letter of motivation 
and key publications. Please send your expression of interest (not mandatory) 
to  anna.monre...@unipi.it<mailto:anna.monre...@unipi.it> and to 
salvatore.ruggi...@unipi.it<mailto:salvatore.ruggi...@unipi.it> with subject: 
[FINDHR] Expression of interest.

Recent publications of KDD Lab on Fairness and XAI:


  *
R. Guidotti, A. Monreale, S. Ruggieri, F. Naretto, F. Turini, D. Pedreschi, F. 
Giannotti. Stable and Actionable Explanations of Black-box Models through 
Factual and Counterfactual Rules. Data Mining and Knowledge Discovery, 2023.
  *
S. Ruggieri, J. M. Alvarez, A. Pugnana, L. State, F. Turini. Can We Trust 
Fair-AI? 37th AAAI Conference on Artificial Intelligence (AAAI 2023). AAAI 
Press, February 2023.
  *
O. Lampridis, L. State, R. Guidotti, S. Ruggieri. Explaining short text 
classification with diverse synthetic exemplars and counter-exemplars. Machine 
Learning Journal, 2023.
  *
M. Lazzari, J. M. Alvarez, S. Ruggieri. Predicting and explaining employee 
turnover intention. International Journal of Data Science and Applications. 
Vol. 14, Issue 3, September 2022, 279–292.
  *
R. Guidotti, S. Ruggieri. Ensemble of Counterfactual Explainers. Discovery 
Science (DS 2021). 358-368. Vol. 12986 of LNCS, Springer, October 2021.
  *
M. Setzu, R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, F. Giannotti. 
GLocalX - From Local to Global Explanations of Black Box AI Models. Artificial 
Intelligence, Volume 294, 2021, 103457
  *
E. Ntoutsi, et al. Bias in data-driven artificial intelligence systems — An 
introductory survey. WIREs Data Mining and Knowledge Discovery. Vol. 10, Issue 
3, May/June 2020, e1356.
  *
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. 
Pedreschi. 2018. A Survey of Methods for Explaining Black Box Models. ACM 
Comput. Surv. 51, 5, Article 93 (January 2019)


Please circulate this post in your networks!

--
Prof. Salvatore Ruggieri
Department of Computer Science
University of Pisa, Italy
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpages.di.unipi.it%2Fruggieri%2F&data=05%7C01%7Cuai%40engr.oregonstate.edu%7Cb7f3b0001e244ee4b89b08db18c5c1cb%7Cce6d05e13c5e4d6287a84c4a2713c113%7C0%7C0%7C638131009864322326%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=JjOEtbqs7kxaktOKVa6VyzfI66WONsA7ZqA%2BTq89RN4%3D&reserved=0
_______________________________________________
uai mailing list
uai@engr.orst.edu
https://it.engineering.oregonstate.edu/mailman/listinfo/uai

Reply via email to