On Tue, 8 Nov 2016 17:21:14 +0100 Maxime Ripard <maxime.rip...@free-electrons.com> wrote:
> This program generates raw SPL images that can be flashed on the NAND with > the ECC and randomizer properly set up. > Maybe you should mention that this file has been copied from the sunxi-tools project. Otherwise, Acked-by: Boris Brezillon <boris.brezil...@free-electrons.com> > Signed-off-by: Maxime Ripard <maxime.rip...@free-electrons.com> > --- > tools/.gitignore | 1 +- > tools/Makefile | 1 +- > tools/sunxi-spl-image-builder.c | 1113 ++++++++++++++++++++++++++++++++- > 3 files changed, 1115 insertions(+), 0 deletions(-) > create mode 100644 tools/sunxi-spl-image-builder.c > > diff --git a/tools/.gitignore b/tools/.gitignore > index cb1e722d4575..16574467544c 100644 > --- a/tools/.gitignore > +++ b/tools/.gitignore > @@ -15,6 +15,7 @@ > /mkexynosspl > /mxsboot > /mksunxiboot > +/sunxi-spl-image-builder > /ncb > /proftool > /relocate-rela > diff --git a/tools/Makefile b/tools/Makefile > index 400588cf0f5c..dfeeb23484ce 100644 > --- a/tools/Makefile > +++ b/tools/Makefile > @@ -171,6 +171,7 @@ hostprogs-$(CONFIG_MX28) += mxsboot > HOSTCFLAGS_mxsboot.o := -pedantic > > hostprogs-$(CONFIG_ARCH_SUNXI) += mksunxiboot > +hostprogs-$(CONFIG_ARCH_SUNXI) += sunxi-spl-image-builder > > hostprogs-$(CONFIG_NETCONSOLE) += ncb > hostprogs-$(CONFIG_SHA1_CHECK_UB_IMG) += ubsha1 > diff --git a/tools/sunxi-spl-image-builder.c b/tools/sunxi-spl-image-builder.c > new file mode 100644 > index 000000000000..0f915eb2bdf5 > --- /dev/null > +++ b/tools/sunxi-spl-image-builder.c > @@ -0,0 +1,1113 @@ > +/* > + * Generic binary BCH encoding/decoding library > + * > + * This program is free software; you can redistribute it and/or modify it > + * under the terms of the GNU General Public License version 2 as published > by > + * the Free Software Foundation. > + * > + * This program is distributed in the hope that it will be useful, but > WITHOUT > + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or > + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for > + * more details. > + * > + * You should have received a copy of the GNU General Public License along > with > + * this program; if not, write to the Free Software Foundation, Inc., 51 > + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. > + * > + * For the BCH implementation: > + * > + * Copyright © 2011 Parrot S.A. > + * > + * Author: Ivan Djelic <ivan.dje...@parrot.com> > + * > + * See also: > + * http://lxr.free-electrons.com/source/lib/bch.c > + * > + * For the randomizer and image builder implementation: > + * > + * Copyright © 2016 NextThing Co. > + * Copyright © 2016 Free Electrons > + * > + * Author: Boris Brezillon <boris.brezil...@free-electrons.com> > + * > + */ > + > +#include <stdint.h> > +#include <stdlib.h> > +#include <string.h> > +#include <stdio.h> > +#include <linux/kernel.h> > +#include <linux/errno.h> > +#include <asm/byteorder.h> > +#include <endian.h> > +#include <getopt.h> > +#include <version.h> > + > +#if defined(CONFIG_BCH_CONST_PARAMS) > +#define GF_M(_p) (CONFIG_BCH_CONST_M) > +#define GF_T(_p) (CONFIG_BCH_CONST_T) > +#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) > +#else > +#define GF_M(_p) ((_p)->m) > +#define GF_T(_p) ((_p)->t) > +#define GF_N(_p) ((_p)->n) > +#endif > + > +#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) > + > +#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) > +#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) > + > +#ifndef dbg > +#define dbg(_fmt, args...) do {} while (0) > +#endif > + > +#define cpu_to_be32 htobe32 > +#define kfree free > +#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) > + > +#define BCH_PRIMITIVE_POLY 0x5803 > + > +struct image_info { > + int ecc_strength; > + int ecc_step_size; > + int page_size; > + int oob_size; > + int usable_page_size; > + int eraseblock_size; > + int scramble; > + int boot0; > + off_t offset; > + const char *source; > + const char *dest; > +}; > + > +/** > + * struct bch_control - BCH control structure > + * @m: Galois field order > + * @n: maximum codeword size in bits (= 2^m-1) > + * @t: error correction capability in bits > + * @ecc_bits: ecc exact size in bits, i.e. generator polynomial degree > (<=m*t) > + * @ecc_bytes: ecc max size (m*t bits) in bytes > + * @a_pow_tab: Galois field GF(2^m) exponentiation lookup table > + * @a_log_tab: Galois field GF(2^m) log lookup table > + * @mod8_tab: remainder generator polynomial lookup tables > + * @ecc_buf: ecc parity words buffer > + * @ecc_buf2: ecc parity words buffer > + * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots > + * @syn: syndrome buffer > + * @cache: log-based polynomial representation buffer > + * @elp: error locator polynomial > + * @poly_2t: temporary polynomials of degree 2t > + */ > +struct bch_control { > + unsigned int m; > + unsigned int n; > + unsigned int t; > + unsigned int ecc_bits; > + unsigned int ecc_bytes; > +/* private: */ > + uint16_t *a_pow_tab; > + uint16_t *a_log_tab; > + uint32_t *mod8_tab; > + uint32_t *ecc_buf; > + uint32_t *ecc_buf2; > + unsigned int *xi_tab; > + unsigned int *syn; > + int *cache; > + struct gf_poly *elp; > + struct gf_poly *poly_2t[4]; > +}; > + > +static int fls(int x) > +{ > + int r = 32; > + > + if (!x) > + return 0; > + if (!(x & 0xffff0000u)) { > + x <<= 16; > + r -= 16; > + } > + if (!(x & 0xff000000u)) { > + x <<= 8; > + r -= 8; > + } > + if (!(x & 0xf0000000u)) { > + x <<= 4; > + r -= 4; > + } > + if (!(x & 0xc0000000u)) { > + x <<= 2; > + r -= 2; > + } > + if (!(x & 0x80000000u)) { > + x <<= 1; > + r -= 1; > + } > + return r; > +} > + > +/* > + * represent a polynomial over GF(2^m) > + */ > +struct gf_poly { > + unsigned int deg; /* polynomial degree */ > + unsigned int c[0]; /* polynomial terms */ > +}; > + > +/* given its degree, compute a polynomial size in bytes */ > +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) > + > +/* polynomial of degree 1 */ > +struct gf_poly_deg1 { > + struct gf_poly poly; > + unsigned int c[2]; > +}; > + > +/* > + * same as encode_bch(), but process input data one byte at a time > + */ > +static void encode_bch_unaligned(struct bch_control *bch, > + const unsigned char *data, unsigned int len, > + uint32_t *ecc) > +{ > + int i; > + const uint32_t *p; > + const int l = BCH_ECC_WORDS(bch)-1; > + > + while (len--) { > + p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); > + > + for (i = 0; i < l; i++) > + ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); > + > + ecc[l] = (ecc[l] << 8)^(*p); > + } > +} > + > +/* > + * convert ecc bytes to aligned, zero-padded 32-bit ecc words > + */ > +static void load_ecc8(struct bch_control *bch, uint32_t *dst, > + const uint8_t *src) > +{ > + uint8_t pad[4] = {0, 0, 0, 0}; > + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; > + > + for (i = 0; i < nwords; i++, src += 4) > + dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; > + > + memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); > + dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; > +} > + > +/* > + * convert 32-bit ecc words to ecc bytes > + */ > +static void store_ecc8(struct bch_control *bch, uint8_t *dst, > + const uint32_t *src) > +{ > + uint8_t pad[4]; > + unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; > + > + for (i = 0; i < nwords; i++) { > + *dst++ = (src[i] >> 24); > + *dst++ = (src[i] >> 16) & 0xff; > + *dst++ = (src[i] >> 8) & 0xff; > + *dst++ = (src[i] >> 0) & 0xff; > + } > + pad[0] = (src[nwords] >> 24); > + pad[1] = (src[nwords] >> 16) & 0xff; > + pad[2] = (src[nwords] >> 8) & 0xff; > + pad[3] = (src[nwords] >> 0) & 0xff; > + memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); > +} > + > +/** > + * encode_bch - calculate BCH ecc parity of data > + * @bch: BCH control structure > + * @data: data to encode > + * @len: data length in bytes > + * @ecc: ecc parity data, must be initialized by caller > + * > + * The @ecc parity array is used both as input and output parameter, in > order to > + * allow incremental computations. It should be of the size indicated by > member > + * @ecc_bytes of @bch, and should be initialized to 0 before the first call. > + * > + * The exact number of computed ecc parity bits is given by member @ecc_bits > of > + * @bch; it may be less than m*t for large values of t. > + */ > +static void encode_bch(struct bch_control *bch, const uint8_t *data, > + unsigned int len, uint8_t *ecc) > +{ > + const unsigned int l = BCH_ECC_WORDS(bch)-1; > + unsigned int i, mlen; > + unsigned long m; > + uint32_t w, r[l+1]; > + const uint32_t * const tab0 = bch->mod8_tab; > + const uint32_t * const tab1 = tab0 + 256*(l+1); > + const uint32_t * const tab2 = tab1 + 256*(l+1); > + const uint32_t * const tab3 = tab2 + 256*(l+1); > + const uint32_t *pdata, *p0, *p1, *p2, *p3; > + > + if (ecc) { > + /* load ecc parity bytes into internal 32-bit buffer */ > + load_ecc8(bch, bch->ecc_buf, ecc); > + } else { > + memset(bch->ecc_buf, 0, sizeof(r)); > + } > + > + /* process first unaligned data bytes */ > + m = ((uintptr_t)data) & 3; > + if (m) { > + mlen = (len < (4-m)) ? len : 4-m; > + encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); > + data += mlen; > + len -= mlen; > + } > + > + /* process 32-bit aligned data words */ > + pdata = (uint32_t *)data; > + mlen = len/4; > + data += 4*mlen; > + len -= 4*mlen; > + memcpy(r, bch->ecc_buf, sizeof(r)); > + > + /* > + * split each 32-bit word into 4 polynomials of weight 8 as follows: > + * > + * 31 ...24 23 ...16 15 ... 8 7 ... 0 > + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt > + * tttttttt mod g = r0 (precomputed) > + * zzzzzzzz 00000000 mod g = r1 (precomputed) > + * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) > + * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) > + * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 > + */ > + while (mlen--) { > + /* input data is read in big-endian format */ > + w = r[0]^cpu_to_be32(*pdata++); > + p0 = tab0 + (l+1)*((w >> 0) & 0xff); > + p1 = tab1 + (l+1)*((w >> 8) & 0xff); > + p2 = tab2 + (l+1)*((w >> 16) & 0xff); > + p3 = tab3 + (l+1)*((w >> 24) & 0xff); > + > + for (i = 0; i < l; i++) > + r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; > + > + r[l] = p0[l]^p1[l]^p2[l]^p3[l]; > + } > + memcpy(bch->ecc_buf, r, sizeof(r)); > + > + /* process last unaligned bytes */ > + if (len) > + encode_bch_unaligned(bch, data, len, bch->ecc_buf); > + > + /* store ecc parity bytes into original parity buffer */ > + if (ecc) > + store_ecc8(bch, ecc, bch->ecc_buf); > +} > + > +static inline int modulo(struct bch_control *bch, unsigned int v) > +{ > + const unsigned int n = GF_N(bch); > + while (v >= n) { > + v -= n; > + v = (v & n) + (v >> GF_M(bch)); > + } > + return v; > +} > + > +/* > + * shorter and faster modulo function, only works when v < 2N. > + */ > +static inline int mod_s(struct bch_control *bch, unsigned int v) > +{ > + const unsigned int n = GF_N(bch); > + return (v < n) ? v : v-n; > +} > + > +static inline int deg(unsigned int poly) > +{ > + /* polynomial degree is the most-significant bit index */ > + return fls(poly)-1; > +} > + > +/* Galois field basic operations: multiply, divide, inverse, etc. */ > + > +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, > + unsigned int b) > +{ > + return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ > + bch->a_log_tab[b])] : 0; > +} > + > +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) > +{ > + return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; > +} > + > +static inline unsigned int a_pow(struct bch_control *bch, int i) > +{ > + return bch->a_pow_tab[modulo(bch, i)]; > +} > + > +static inline int a_log(struct bch_control *bch, unsigned int x) > +{ > + return bch->a_log_tab[x]; > +} > + > +/* > + * generate Galois field lookup tables > + */ > +static int build_gf_tables(struct bch_control *bch, unsigned int poly) > +{ > + unsigned int i, x = 1; > + const unsigned int k = 1 << deg(poly); > + > + /* primitive polynomial must be of degree m */ > + if (k != (1u << GF_M(bch))) > + return -1; > + > + for (i = 0; i < GF_N(bch); i++) { > + bch->a_pow_tab[i] = x; > + bch->a_log_tab[x] = i; > + if (i && (x == 1)) > + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ > + return -1; > + x <<= 1; > + if (x & k) > + x ^= poly; > + } > + bch->a_pow_tab[GF_N(bch)] = 1; > + bch->a_log_tab[0] = 0; > + > + return 0; > +} > + > +/* > + * compute generator polynomial remainder tables for fast encoding > + */ > +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) > +{ > + int i, j, b, d; > + uint32_t data, hi, lo, *tab; > + const int l = BCH_ECC_WORDS(bch); > + const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); > + const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); > + > + memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); > + > + for (i = 0; i < 256; i++) { > + /* p(X)=i is a small polynomial of weight <= 8 */ > + for (b = 0; b < 4; b++) { > + /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ > + tab = bch->mod8_tab + (b*256+i)*l; > + data = i << (8*b); > + while (data) { > + d = deg(data); > + /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ > + data ^= g[0] >> (31-d); > + for (j = 0; j < ecclen; j++) { > + hi = (d < 31) ? g[j] << (d+1) : 0; > + lo = (j+1 < plen) ? > + g[j+1] >> (31-d) : 0; > + tab[j] ^= hi|lo; > + } > + } > + } > + } > +} > + > +/* > + * build a base for factoring degree 2 polynomials > + */ > +static int build_deg2_base(struct bch_control *bch) > +{ > + const int m = GF_M(bch); > + int i, j, r; > + unsigned int sum, x, y, remaining, ak = 0, xi[m]; > + > + /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ > + for (i = 0; i < m; i++) { > + for (j = 0, sum = 0; j < m; j++) > + sum ^= a_pow(bch, i*(1 << j)); > + > + if (sum) { > + ak = bch->a_pow_tab[i]; > + break; > + } > + } > + /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ > + remaining = m; > + memset(xi, 0, sizeof(xi)); > + > + for (x = 0; (x <= GF_N(bch)) && remaining; x++) { > + y = gf_sqr(bch, x)^x; > + for (i = 0; i < 2; i++) { > + r = a_log(bch, y); > + if (y && (r < m) && !xi[r]) { > + bch->xi_tab[r] = x; > + xi[r] = 1; > + remaining--; > + dbg("x%d = %x\n", r, x); > + break; > + } > + y ^= ak; > + } > + } > + /* should not happen but check anyway */ > + return remaining ? -1 : 0; > +} > + > +static void *bch_alloc(size_t size, int *err) > +{ > + void *ptr; > + > + ptr = malloc(size); > + if (ptr == NULL) > + *err = 1; > + return ptr; > +} > + > +/* > + * compute generator polynomial for given (m,t) parameters. > + */ > +static uint32_t *compute_generator_polynomial(struct bch_control *bch) > +{ > + const unsigned int m = GF_M(bch); > + const unsigned int t = GF_T(bch); > + int n, err = 0; > + unsigned int i, j, nbits, r, word, *roots; > + struct gf_poly *g; > + uint32_t *genpoly; > + > + g = bch_alloc(GF_POLY_SZ(m*t), &err); > + roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); > + genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); > + > + if (err) { > + kfree(genpoly); > + genpoly = NULL; > + goto finish; > + } > + > + /* enumerate all roots of g(X) */ > + memset(roots , 0, (bch->n+1)*sizeof(*roots)); > + for (i = 0; i < t; i++) { > + for (j = 0, r = 2*i+1; j < m; j++) { > + roots[r] = 1; > + r = mod_s(bch, 2*r); > + } > + } > + /* build generator polynomial g(X) */ > + g->deg = 0; > + g->c[0] = 1; > + for (i = 0; i < GF_N(bch); i++) { > + if (roots[i]) { > + /* multiply g(X) by (X+root) */ > + r = bch->a_pow_tab[i]; > + g->c[g->deg+1] = 1; > + for (j = g->deg; j > 0; j--) > + g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; > + > + g->c[0] = gf_mul(bch, g->c[0], r); > + g->deg++; > + } > + } > + /* store left-justified binary representation of g(X) */ > + n = g->deg+1; > + i = 0; > + > + while (n > 0) { > + nbits = (n > 32) ? 32 : n; > + for (j = 0, word = 0; j < nbits; j++) { > + if (g->c[n-1-j]) > + word |= 1u << (31-j); > + } > + genpoly[i++] = word; > + n -= nbits; > + } > + bch->ecc_bits = g->deg; > + > +finish: > + kfree(g); > + kfree(roots); > + > + return genpoly; > +} > + > +/** > + * free_bch - free the BCH control structure > + * @bch: BCH control structure to release > + */ > +static void free_bch(struct bch_control *bch) > +{ > + unsigned int i; > + > + if (bch) { > + kfree(bch->a_pow_tab); > + kfree(bch->a_log_tab); > + kfree(bch->mod8_tab); > + kfree(bch->ecc_buf); > + kfree(bch->ecc_buf2); > + kfree(bch->xi_tab); > + kfree(bch->syn); > + kfree(bch->cache); > + kfree(bch->elp); > + > + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) > + kfree(bch->poly_2t[i]); > + > + kfree(bch); > + } > +} > + > +/** > + * init_bch - initialize a BCH encoder/decoder > + * @m: Galois field order, should be in the range 5-15 > + * @t: maximum error correction capability, in bits > + * @prim_poly: user-provided primitive polynomial (or 0 to use default) > + * > + * Returns: > + * a newly allocated BCH control structure if successful, NULL otherwise > + * > + * This initialization can take some time, as lookup tables are built for > fast > + * encoding/decoding; make sure not to call this function from a time > critical > + * path. Usually, init_bch() should be called on module/driver init and > + * free_bch() should be called to release memory on exit. > + * > + * You may provide your own primitive polynomial of degree @m in argument > + * @prim_poly, or let init_bch() use its default polynomial. > + * > + * Once init_bch() has successfully returned a pointer to a newly allocated > + * BCH control structure, ecc length in bytes is given by member @ecc_bytes > of > + * the structure. > + */ > +static struct bch_control *init_bch(int m, int t, unsigned int prim_poly) > +{ > + int err = 0; > + unsigned int i, words; > + uint32_t *genpoly; > + struct bch_control *bch = NULL; > + > + const int min_m = 5; > + const int max_m = 15; > + > + /* default primitive polynomials */ > + static const unsigned int prim_poly_tab[] = { > + 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, > + 0x402b, 0x8003, > + }; > + > +#if defined(CONFIG_BCH_CONST_PARAMS) > + if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { > + printk(KERN_ERR "bch encoder/decoder was configured to support " > + "parameters m=%d, t=%d only!\n", > + CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); > + goto fail; > + } > +#endif > + if ((m < min_m) || (m > max_m)) > + /* > + * values of m greater than 15 are not currently supported; > + * supporting m > 15 would require changing table base type > + * (uint16_t) and a small patch in matrix transposition > + */ > + goto fail; > + > + /* sanity checks */ > + if ((t < 1) || (m*t >= ((1 << m)-1))) > + /* invalid t value */ > + goto fail; > + > + /* select a primitive polynomial for generating GF(2^m) */ > + if (prim_poly == 0) > + prim_poly = prim_poly_tab[m-min_m]; > + > + bch = malloc(sizeof(*bch)); > + if (bch == NULL) > + goto fail; > + > + memset(bch, 0, sizeof(*bch)); > + > + bch->m = m; > + bch->t = t; > + bch->n = (1 << m)-1; > + words = DIV_ROUND_UP(m*t, 32); > + bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); > + bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); > + bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); > + bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); > + bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); > + bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); > + bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); > + bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); > + bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); > + bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); > + > + for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) > + bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); > + > + if (err) > + goto fail; > + > + err = build_gf_tables(bch, prim_poly); > + if (err) > + goto fail; > + > + /* use generator polynomial for computing encoding tables */ > + genpoly = compute_generator_polynomial(bch); > + if (genpoly == NULL) > + goto fail; > + > + build_mod8_tables(bch, genpoly); > + kfree(genpoly); > + > + err = build_deg2_base(bch); > + if (err) > + goto fail; > + > + return bch; > + > +fail: > + free_bch(bch); > + return NULL; > +} > + > +static void swap_bits(uint8_t *buf, int len) > +{ > + int i, j; > + > + for (j = 0; j < len; j++) { > + uint8_t byte = buf[j]; > + > + buf[j] = 0; > + for (i = 0; i < 8; i++) { > + if (byte & (1 << i)) > + buf[j] |= (1 << (7 - i)); > + } > + } > +} > + > +static uint16_t lfsr_step(uint16_t state, int count) > +{ > + state &= 0x7fff; > + while (count--) > + state = ((state >> 1) | > + ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff; > + > + return state; > +} > + > +static uint16_t default_scrambler_seeds[] = { > + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, > + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, > + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, > + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, > + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, > + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, > + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, > + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, > + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, > + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, > + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, > + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, > + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, > + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, > + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, > + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, > +}; > + > +static uint16_t brom_scrambler_seeds[] = { 0x4a80 }; > + > +static void scramble(const struct image_info *info, > + int page, uint8_t *data, int datalen) > +{ > + uint16_t state; > + int i; > + > + /* Boot0 is always scrambled no matter the command line option. */ > + if (info->boot0) { > + state = brom_scrambler_seeds[0]; > + } else { > + unsigned seedmod = info->eraseblock_size / info->page_size; > + > + /* Bail out earlier if the user didn't ask for scrambling. */ > + if (!info->scramble) > + return; > + > + if (seedmod > ARRAY_SIZE(default_scrambler_seeds)) > + seedmod = ARRAY_SIZE(default_scrambler_seeds); > + > + state = default_scrambler_seeds[page % seedmod]; > + } > + > + /* Prepare the initial state... */ > + state = lfsr_step(state, 15); > + > + /* and start scrambling data. */ > + for (i = 0; i < datalen; i++) { > + data[i] ^= state; > + state = lfsr_step(state, 8); > + } > +} > + > +static int write_page(const struct image_info *info, uint8_t *buffer, > + FILE *src, FILE *rnd, FILE *dst, > + struct bch_control *bch, int page) > +{ > + int steps = info->usable_page_size / info->ecc_step_size; > + int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); > + off_t pos = ftell(dst); > + size_t pad, cnt; > + int i; > + > + if (eccbytes % 2) > + eccbytes++; > + > + memset(buffer, 0xff, info->page_size + info->oob_size); > + cnt = fread(buffer, 1, info->usable_page_size, src); > + if (!cnt) { > + if (!feof(src)) { > + fprintf(stderr, > + "Failed to read data from the source\n"); > + return -1; > + } else { > + return 0; > + } > + } > + > + fwrite(buffer, info->page_size + info->oob_size, 1, dst); > + > + for (i = 0; i < info->usable_page_size; i++) { > + if (buffer[i] != 0xff) > + break; > + } > + > + /* We leave empty pages at 0xff. */ > + if (i == info->usable_page_size) > + return 0; > + > + /* Restore the source pointer to read it again. */ > + fseek(src, -cnt, SEEK_CUR); > + > + /* Randomize unused space if scrambling is required. */ > + if (info->scramble) { > + int offs; > + > + if (info->boot0) { > + offs = steps * (info->ecc_step_size + eccbytes + 4); > + cnt = info->page_size + info->oob_size - offs; > + fread(buffer + offs, 1, cnt, rnd); > + } else { > + offs = info->page_size + (steps * (eccbytes + 4)); > + cnt = info->page_size + info->oob_size - offs; > + memset(buffer + offs, 0xff, cnt); > + scramble(info, page, buffer + offs, cnt); > + } > + fseek(dst, pos + offs, SEEK_SET); > + fwrite(buffer + offs, cnt, 1, dst); > + } > + > + for (i = 0; i < steps; i++) { > + int ecc_offs, data_offs; > + uint8_t *ecc; > + > + memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4); > + ecc = buffer + info->ecc_step_size + 4; > + if (info->boot0) { > + data_offs = i * (info->ecc_step_size + eccbytes + 4); > + ecc_offs = data_offs + info->ecc_step_size + 4; > + } else { > + data_offs = i * info->ecc_step_size; > + ecc_offs = info->page_size + 4 + (i * (eccbytes + 4)); > + } > + > + cnt = fread(buffer, 1, info->ecc_step_size, src); > + if (!cnt && !feof(src)) { > + fprintf(stderr, > + "Failed to read data from the source\n"); > + return -1; > + } > + > + pad = info->ecc_step_size - cnt; > + if (pad) { > + if (info->scramble && info->boot0) > + fread(buffer + cnt, 1, pad, rnd); > + else > + memset(buffer + cnt, 0xff, pad); > + } > + > + memset(ecc, 0, eccbytes); > + swap_bits(buffer, info->ecc_step_size + 4); > + encode_bch(bch, buffer, info->ecc_step_size + 4, ecc); > + swap_bits(buffer, info->ecc_step_size + 4); > + swap_bits(ecc, eccbytes); > + scramble(info, page, buffer, info->ecc_step_size + 4 + > eccbytes); > + > + fseek(dst, pos + data_offs, SEEK_SET); > + fwrite(buffer, info->ecc_step_size, 1, dst); > + fseek(dst, pos + ecc_offs - 4, SEEK_SET); > + fwrite(ecc - 4, eccbytes + 4, 1, dst); > + } > + > + /* Fix BBM. */ > + fseek(dst, pos + info->page_size, SEEK_SET); > + memset(buffer, 0xff, 2); > + fwrite(buffer, 2, 1, dst); > + > + /* Make dst pointer point to the next page. */ > + fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET); > + > + return 0; > +} > + > +static int create_image(const struct image_info *info) > +{ > + off_t page = info->offset / info->page_size; > + struct bch_control *bch; > + FILE *src, *dst, *rnd; > + uint8_t *buffer; > + > + bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY); > + if (!bch) { > + fprintf(stderr, "Failed to init the BCH engine\n"); > + return -1; > + } > + > + buffer = malloc(info->page_size + info->oob_size); > + if (!buffer) { > + fprintf(stderr, "Failed to allocate the NAND page buffer\n"); > + return -1; > + } > + > + memset(buffer, 0xff, info->page_size + info->oob_size); > + > + src = fopen(info->source, "r"); > + if (!src) { > + fprintf(stderr, "Failed to open source file (%s)\n", > + info->source); > + return -1; > + } > + > + dst = fopen(info->dest, "w"); > + if (!dst) { > + fprintf(stderr, "Failed to open dest file (%s)\n", info->dest); > + return -1; > + } > + > + rnd = fopen("/dev/urandom", "r"); > + if (!rnd) { > + fprintf(stderr, "Failed to open /dev/urandom\n"); > + return -1; > + } > + > + while (!feof(src)) { > + int ret; > + > + ret = write_page(info, buffer, src, rnd, dst, bch, page++); > + if (ret) > + return ret; > + } > + > + return 0; > +} > + > +static void display_help(int status) > +{ > + fprintf(status == EXIT_SUCCESS ? stdout : stderr, > + "sunxi-nand-image-builder %s\n" > + "\n" > + "Usage: sunxi-nand-image-builder [OPTIONS] source-image > output-image\n" > + "\n" > + "Creates a raw NAND image that can be read by the sunxi NAND > controller.\n" > + "\n" > + "-h --help Display this help and > exit\n" > + "-c <str>/<step> --ecc=<str>/<step> ECC config > (strength/step-size)\n" > + "-p <size> --page=<size> Page size\n" > + "-o <size> --oob=<size> OOB size\n" > + "-u <size> --usable=<size> Usable page size\n" > + "-e <size> --eraseblock=<size> Erase block size\n" > + "-b --boot0 Build a boot0 image.\n" > + "-s --scramble Scramble data\n" > + "-a <offset> --address=<offset> Where the image will be > programmed.\n" > + "\n" > + "Notes:\n" > + "All the information you need to pass to this tool should be > part of\n" > + "the NAND datasheet.\n" > + "\n" > + "The NAND controller only supports the following ECC configs\n" > + " Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n" > + " Valid ECC step size: 512 and 1024\n" > + "\n" > + "If you are building a boot0 image, you'll have specify extra > options.\n" > + "These options should be chosen based on the layouts described > here:\n" > + " http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n" > + "\n" > + " --usable should be assigned the 'Hardware page' value\n" > + " --ecc should be assigned the 'ECC capacity'/'ECC page' > values\n" > + " --usable should be smaller than --page\n" > + "\n" > + "The --address option is only required for non-boot0 images > that are \n" > + "meant to be programmed at a non eraseblock aligned offset.\n" > + "\n" > + "Examples:\n" > + " The H27UCG8T2BTR-BC NAND exposes\n" > + " * 16k pages\n" > + " * 1280 OOB bytes per page\n" > + " * 4M eraseblocks\n" > + " * requires data scrambling\n" > + " * expects a minimum ECC of 40bits/1024bytes\n" > + "\n" > + " A normal image can be generated with\n" > + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s > -c 40/1024\n" > + " A boot0 image can be generated with\n" > + " sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s > -b -u 4096 -c 64/1024\n", > + PLAIN_VERSION); > + exit(status); > +} > + > +static int check_image_info(struct image_info *info) > +{ > + static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 > }; > + int eccbytes, eccsteps; > + unsigned i; > + > + if (!info->page_size) { > + fprintf(stderr, "--page is missing\n"); > + return -EINVAL; > + } > + > + if (!info->page_size) { > + fprintf(stderr, "--oob is missing\n"); > + return -EINVAL; > + } > + > + if (!info->eraseblock_size) { > + fprintf(stderr, "--eraseblock is missing\n"); > + return -EINVAL; > + } > + > + if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) { > + fprintf(stderr, "Invalid ECC step argument: %d\n", > + info->ecc_step_size); > + return -EINVAL; > + } > + > + for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) { > + if (valid_ecc_strengths[i] == info->ecc_strength) > + break; > + } > + > + if (i == ARRAY_SIZE(valid_ecc_strengths)) { > + fprintf(stderr, "Invalid ECC strength argument: %d\n", > + info->ecc_strength); > + return -EINVAL; > + } > + > + eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8); > + if (eccbytes % 2) > + eccbytes++; > + eccbytes += 4; > + > + eccsteps = info->usable_page_size / info->ecc_step_size; > + > + if (info->page_size + info->oob_size < > + info->usable_page_size + (eccsteps * eccbytes)) { > + fprintf(stderr, > + "ECC bytes do not fit in the NAND page, choose a weaker > ECC\n"); > + return -EINVAL; > + } > + > + return 0; > +} > + > +int main(int argc, char **argv) > +{ > + struct image_info info; > + > + memset(&info, 0, sizeof(info)); > + /* > + * Process user arguments > + */ > + for (;;) { > + int option_index = 0; > + char *endptr = NULL; > + static const struct option long_options[] = { > + {"help", no_argument, 0, 'h'}, > + {"ecc", required_argument, 0, 'c'}, > + {"page", required_argument, 0, 'p'}, > + {"oob", required_argument, 0, 'o'}, > + {"usable", required_argument, 0, 'u'}, > + {"eraseblock", required_argument, 0, 'e'}, > + {"boot0", no_argument, 0, 'b'}, > + {"scramble", no_argument, 0, 's'}, > + {"address", required_argument, 0, 'a'}, > + {0, 0, 0, 0}, > + }; > + > + int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh", > + long_options, &option_index); > + if (c == EOF) > + break; > + > + switch (c) { > + case 'h': > + display_help(0); > + break; > + case 's': > + info.scramble = 1; > + break; > + case 'c': > + info.ecc_strength = strtol(optarg, &endptr, 0); > + if (endptr || *endptr == '/') > + info.ecc_step_size = strtol(endptr + 1, NULL, > 0); > + break; > + case 'p': > + info.page_size = strtol(optarg, NULL, 0); > + break; > + case 'o': > + info.oob_size = strtol(optarg, NULL, 0); > + break; > + case 'u': > + info.usable_page_size = strtol(optarg, NULL, 0); > + break; > + case 'e': > + info.eraseblock_size = strtol(optarg, NULL, 0); > + break; > + case 'b': > + info.boot0 = 1; > + break; > + case 'a': > + info.offset = strtoull(optarg, NULL, 0); > + break; > + case '?': > + display_help(-1); > + break; > + } > + } > + > + if ((argc - optind) != 2) > + display_help(-1); > + > + info.source = argv[optind]; > + info.dest = argv[optind + 1]; > + > + if (!info.boot0) { > + info.usable_page_size = info.page_size; > + } else if (!info.usable_page_size) { > + if (info.page_size > 8192) > + info.usable_page_size = 8192; > + else if (info.page_size > 4096) > + info.usable_page_size = 4096; > + else > + info.usable_page_size = 1024; > + } > + > + if (check_image_info(&info)) > + display_help(-1); > + > + return create_image(&info); > +} _______________________________________________ U-Boot mailing list U-Boot@lists.denx.de http://lists.denx.de/mailman/listinfo/u-boot