Note : in your question in Julia Discource, you state that your areao of 
revolution is 2*pi*integrate(f(x)*sqrt(1+f(x).diff(x)), (x, a, b)).

I beg to differ : it should be 
2*pi*integrate(*abs*(f(x))*sqrt(1+*abs*(f(x).diff(x))), 
(x, a, b)). In your specific case, both f(x) and f(x).diff(x) are positive 
on [1 3], so there is no numerical difference.

BTW : Mathematica can get you an explicit expression for your integral, 
involving hypergeometric functions, but fails to compute its numerical 
values.
 HTH,
Le dimanche 15 janvier 2023 à 08:36:14 UTC+1, zaqhie...@gmail.com a écrit :

> Hi all,
>
> I have a question: why SymPy (in JULIA and PYthon) unable to get the 
> numerical answer for area of surface of revolution? 
>
> Is it impossible?
>
> This is my question posted today on Julia Discourse:
>
>
> https://discourse.julialang.org/t/area-of-surface-of-revolution-integral-too-hard-to-be-computed-by-julia-sympy-and-python-sympy/92981
>
> -- 
> С наилучшими пожеланиями, Богиня Фрейя
> Atenciosamente, Freya the Goddess
> Meilleurs voeux, Freya the Goddess
> Liebe Grüße, Freya the Goddess
> Best wishes, Freya the Goddess
> よろしくお願いします、Freya the Goddess
> 最好的祝福,Freya the Goddess
> Matakwa mema, Freya the Goddess
> مع أطيب التمنيات ، فريا الإلهة
>

-- 
You received this message because you are subscribed to the Google Groups 
"sympy" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sympy+unsubscr...@googlegroups.com.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sympy/d8b5255a-9a17-4196-aced-c38b549076b0n%40googlegroups.com.

Reply via email to