On Sat, 26 Oct 2024 00:27:25 GMT, Dean Long <dl...@openjdk.org> wrote:
>> This is the implementation of JEP 491: Synchronize Virtual Threads without >> Pinning. See [JEP 491](https://bugs.openjdk.org/browse/JDK-8337395) for >> further details. >> >> In order to make the code review easier the changes have been split into the >> following initial 4 commits: >> >> - Changes to allow unmounting a virtual thread that is currently holding >> monitors. >> - Changes to allow unmounting a virtual thread blocked on synchronized >> trying to acquire the monitor. >> - Changes to allow unmounting a virtual thread blocked in `Object.wait()` >> and its timed-wait variants. >> - Changes to tests, JFR pinned event, and other changes in the JDK libraries. >> >> The changes fix pinning issues for all 4 ports that currently implement >> continuations: x64, aarch64, riscv and ppc. Note: ppc changes were added >> recently and stand in its own commit after the initial ones. >> >> The changes fix pinning issues when using `LM_LIGHTWEIGHT`, i.e. the default >> locking mode, (and `LM_MONITOR` which comes for free), but not when using >> `LM_LEGACY` mode. Note that the `LockingMode` flag has already been >> deprecated ([JDK-8334299](https://bugs.openjdk.org/browse/JDK-8334299)), >> with the intention to remove `LM_LEGACY` code in future releases. >> >> >> ## Summary of changes >> >> ### Unmount virtual thread while holding monitors >> >> As stated in the JEP, currently when a virtual thread enters a synchronized >> method or block, the JVM records the virtual thread's carrier platform >> thread as holding the monitor, not the virtual thread itself. This prevents >> the virtual thread from being unmounted from its carrier, as ownership >> information would otherwise go wrong. In order to fix this limitation we >> will do two things: >> >> - We copy the oops stored in the LockStack of the carrier to the stackChunk >> when freezing (and clear the LockStack). We copy the oops back to the >> LockStack of the next carrier when thawing for the first time (and clear >> them from the stackChunk). Note that we currently assume carriers don't hold >> monitors while mounting virtual threads. >> >> - For inflated monitors we now record the `java.lang.Thread.tid` of the >> owner in the ObjectMonitor's `_owner` field instead of a JavaThread*. This >> allows us to tie the owner of the monitor to a `java.lang.Thread` instance, >> rather than to a JavaThread which is only created per platform thread. The >> tid is already a 64 bit field so we can ignore issues of the counter >> wrapping around. >> >> #### General notes about this part: >> >> - Since virtual th... > > src/hotspot/cpu/aarch64/continuationFreezeThaw_aarch64.inline.hpp line 310: > >> 308: sp -= 2; >> 309: sp[-2] = sp[0]; >> 310: sp[-1] = sp[1]; > > This also seems fragile. This seems to depend on an intimate knowledge of > what the stub will do when returning. We don't need this when doing a > regular return from the native call, so why do we need it here? I'm guessing > freeze/thaw hasn't restored the state quite the same way that the stub > expects. Why is this needed for C2 and not C1? Could the problem be solved with a resume adapter instead, like the interpreter uses? ------------- PR Review Comment: https://git.openjdk.org/jdk/pull/21565#discussion_r1817556946