[sage-support] Re: Diagonalizing a symbolic matrix

2008-10-14 Thread Martin Rubey
Martin Albrecht <[EMAIL PROTECTED]> writes: > On Tuesday 14 October 2008, sonium wrote: > > ((a, b, 0, 0), > > (b,-a,b,0), > > (0,b,a,b), > > (0,0,b,-a)) > > Hi, try this: > > sage: A.echelon_form() # row_reduction by constant entries only > sage: A.echelon_form('frac') # over the fraction fie

[sage-support] Re: Diagonalizing a symbolic matrix

2008-10-14 Thread Martin Albrecht
> I thought the original author wanted to find the diagonalised matrix? > I.e., the eigenvalues on the diagonal. Did I misunderstand? No, I misunderstood. Sorry for the noise. Cheers, Martin -- name: Martin Albrecht _pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99 _www:

[sage-support] Re: Diagonalizing a symbolic matrix

2008-10-14 Thread Martin Albrecht
On Tuesday 14 October 2008, sonium wrote: > ((a, b, 0, 0), > (b,-a,b,0), > (0,b,a,b), > (0,0,b,-a)) Hi, try this: sage: P. = PolynomialRing(QQ) sage: matrix(P,4,4,((a, b, 0, 0), : (b,-a,b,0), : (0,b,a,b), : (0,0,b,-a))) [ a b 0 0] [ b -a b 0] [ 0 b a b] [ 0 0 b -a] sage: A