Martin Albrecht <[EMAIL PROTECTED]> writes:
> On Tuesday 14 October 2008, sonium wrote:
> > ((a, b, 0, 0),
> > (b,-a,b,0),
> > (0,b,a,b),
> > (0,0,b,-a))
>
> Hi, try this:
>
> sage: A.echelon_form() # row_reduction by constant entries only
> sage: A.echelon_form('frac') # over the fraction fie
> I thought the original author wanted to find the diagonalised matrix?
> I.e., the eigenvalues on the diagonal. Did I misunderstand?
No, I misunderstood. Sorry for the noise.
Cheers,
Martin
--
name: Martin Albrecht
_pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
_www:
On Tuesday 14 October 2008, sonium wrote:
> ((a, b, 0, 0),
> (b,-a,b,0),
> (0,b,a,b),
> (0,0,b,-a))
Hi, try this:
sage: P. = PolynomialRing(QQ)
sage: matrix(P,4,4,((a, b, 0, 0),
: (b,-a,b,0),
: (0,b,a,b),
: (0,0,b,-a)))
[ a b 0 0]
[ b -a b 0]
[ 0 b a b]
[ 0 0 b -a]
sage: A