Martin Albrecht <[EMAIL PROTECTED]> writes: > On Tuesday 14 October 2008, sonium wrote: > > ((a, b, 0, 0), > > (b,-a,b,0), > > (0,b,a,b), > > (0,0,b,-a)) > > Hi, try this: > > sage: A.echelon_form() # row_reduction by constant entries only
> sage: A.echelon_form('frac') # over the fraction field > sage: A.echelon_form('bareiss') # fraction free I thought the original author wanted to find the diagonalised matrix? I.e., the eigenvalues on the diagonal. Did I misunderstand? sage: A= matrix(SR,4,4,((a, b, 0, 0),(b,-a,b,0),(0,b,a,b),(0,0,b,-a))) sage: A.parent() Full MatrixSpace of 4 by 4 dense matrices over Symbolic Ring sage: A.eigenvalues() [-sqrt(sqrt(5)*b^2 + 3*b^2 + 2*a^2)/sqrt(2), sqrt(sqrt(5)*b^2 + 3*b^2 + 2*a^2)/sqrt(2), -sqrt(-sqrt(5)*b^2 + 3*b^2 + 2*a^2)/sqrt(2), sqrt(-sqrt(5)*b^2 + 3*b^2 + 2*a^2)/sqrt(2)] sage: A.jordan_form() [-sqrt(2*x^2 + sqrt(5)*b^2 - 3*b^2)/sqrt(2)| 0| 0| 0] [------------------------------------------+------------------------------------------+------------------------------------------+------------------------------------------] [ 0| sqrt(2*x^2 + sqrt(5)*b^2 - 3*b^2)/sqrt(2)| 0| 0] [------------------------------------------+------------------------------------------+------------------------------------------+------------------------------------------] [ 0| 0|-sqrt(2*x^2 - sqrt(5)*b^2 - 3*b^2)/sqrt(2)| 0] [------------------------------------------+------------------------------------------+------------------------------------------+------------------------------------------] [ 0| 0| 0| sqrt(2*x^2 - sqrt(5)*b^2 - 3*b^2)/sqrt(2)] Martin --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to [EMAIL PROTECTED] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---