[sage-support] Re: Computing a sum

2008-11-13 Thread Ondrej Certik
On Thu, Nov 13, 2008 at 4:06 PM, Burcin Erocal <[EMAIL PROTECTED]> wrote: > > On Thu, 13 Nov 2008 12:32:54 +0100 > "Ondrej Certik" <[EMAIL PROTECTED]> wrote: > >> >> On Thu, Nov 13, 2008 at 10:31 AM, Burcin Erocal <[EMAIL PROTECTED]> >> wrote: >> > > >> > We will have a completely new implementat

[sage-support] Re: Computing a sum

2008-11-13 Thread Jaap Spies
Burcin Erocal wrote: > On Thu, 13 Nov 2008 04:09:56 -0600 > Jason Grout <[EMAIL PROTECTED]> wrote: > >> Burcin Erocal wrote: >> >>> >>> Returning to the question of how Sage plans to handle this, the >>> short answer is "I am working on it." :) >>> >> Yeah! >> >> >>> We will have a completely ne

[sage-support] Re: Computing a sum

2008-11-13 Thread Burcin Erocal
On Thu, 13 Nov 2008 12:32:54 +0100 "Ondrej Certik" <[EMAIL PROTECTED]> wrote: > > On Thu, Nov 13, 2008 at 10:31 AM, Burcin Erocal <[EMAIL PROTECTED]> > wrote: > > > > We will have a completely new implementation of summation, > > independent of the one in Maxima. At the moment I have an > > imp

[sage-support] Re: Computing a sum

2008-11-13 Thread Burcin Erocal
On Thu, 13 Nov 2008 04:09:56 -0600 Jason Grout <[EMAIL PROTECTED]> wrote: > > Burcin Erocal wrote: > > > > > > > Returning to the question of how Sage plans to handle this, the > > short answer is "I am working on it." :) > > > > Yeah! > > > > We will have a completely new implementation

[sage-support] Re: Computing a sum

2008-11-13 Thread Ondrej Certik
On Thu, Nov 13, 2008 at 10:31 AM, Burcin Erocal <[EMAIL PROTECTED]> wrote: > > On Mon, 10 Nov 2008 17:36:46 -0800 (PST) > cesarnda <[EMAIL PROTECTED]> wrote: > >> >> Actually this sum can't be done by Maxima, but Derive can do it (even >> an old version of derive). do you have an idea of how this

[sage-support] Re: Computing a sum

2008-11-13 Thread Jason Grout
Burcin Erocal wrote: > > > Returning to the question of how Sage plans to handle this, the short > answer is "I am working on it." :) > Yeah! > We will have a completely new implementation of summation, independent > of the one in Maxima. At the moment I have an implementation of the > the

[sage-support] Re: Computing a sum

2008-11-13 Thread Burcin Erocal
On Mon, 10 Nov 2008 17:36:46 -0800 (PST) cesarnda <[EMAIL PROTECTED]> wrote: > > Actually this sum can't be done by Maxima, but Derive can do it (even > an old version of derive). do you have an idea of how this problem is > planning to be solved? As Robert Dodier pointed out, Maxima can actual

[sage-support] Re: Computing a sum

2008-11-12 Thread Robert Dodier
On Nov 10, 7:15 pm, cesarnda <[EMAIL PROTECTED]> wrote: > that is the output I was expecting, but it is not the input I gave. > Obviously, > 1/x - 1/(x+1) = 1/(x*(x+1)) > > but, if the right hand side can be done why the left hand side can't? > This is the bug I was talking about... Thanks for p

[sage-support] Re: Computing a sum

2008-11-12 Thread Ondrej Certik
On Tue, Nov 11, 2008 at 3:15 AM, cesarnda <[EMAIL PROTECTED]> wrote: > > that is the output I was expecting, but it is not the input I gave. > Obviously, > 1/x - 1/(x+1) = 1/(x*(x+1)) > > but, if the right hand side can be done why the left hand side can't? > This is the bug I was talking about...

[sage-support] Re: Computing a sum

2008-11-10 Thread cesarnda
that is the output I was expecting, but it is not the input I gave. Obviously, 1/x - 1/(x+1) = 1/(x*(x+1)) but, if the right hand side can be done why the left hand side can't? This is the bug I was talking about... On 10 nov, 19:51, "Mike Hansen" <[EMAIL PROTECTED]> wrote: > On Mon, Nov 10, 200

[sage-support] Re: Computing a sum

2008-11-10 Thread Mike Hansen
On Mon, Nov 10, 2008 at 5:36 PM, cesarnda <[EMAIL PROTECTED]> wrote: > > Actually this sum can't be done by Maxima, but Derive can do it (even > an old version of derive). do you have an idea of how this problem is > planning to be solved? Is this the answer you were expecting? (%i6) load(simpli

[sage-support] Re: Computing a sum

2008-11-10 Thread cesarnda
Actually this sum can't be done by Maxima, but Derive can do it (even an old version of derive). do you have an idea of how this problem is planning to be solved? On 10 nov, 19:30, "William Stein" <[EMAIL PROTECTED]> wrote: > On Mon, Nov 10, 2008 at 5:29 PM, cesarnda <[EMAIL PROTECTED]> wrote: >

[sage-support] Re: Computing a sum

2008-11-10 Thread William Stein
On Mon, Nov 10, 2008 at 5:29 PM, cesarnda <[EMAIL PROTECTED]> wrote: > > how could I compute this: > > sum_{ x = 1}^{\infty} 1/x - 1/(x+1) > > or > > sum(1/x-1/(x+1),x,1, infinity) > > directly in Sage, without calling maxima or sympy? Unfortunately, this isn't implemented yet. See: http://trac.