Re: [sage-support] Generator of Finite Field

2012-06-03 Thread Jeroen Demeyer
On 2012-06-03 22:37, Martin Albrecht wrote: > PARI doesn't have a log_repr() to begin with, so I don't see how that's > relevant. Yes, never mind my comment. -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr

Re: Re: [sage-support] Generator of Finite Field

2012-06-03 Thread Martin Albrecht
PARI doesn't have a log_repr() to begin with, so I don't see how that's relevant. On Sunday 03 Jun 2012, Jeroen Demeyer wrote: > On 2012-06-03 12:14, Martin Albrecht wrote: > > 2) K.multiplicative_generator() currently returns a random generator, but > > for the GivaroGFq implementation we should

Re: [sage-support] Generator of Finite Field

2012-06-03 Thread Jeroen Demeyer
On 2012-06-03 12:14, Martin Albrecht wrote: > 2) K.multiplicative_generator() currently returns a random generator, but for > the GivaroGFq implementation we should simply return the generator which has > internal representation '1', i.e., the guy we actually use to represent the > elements. Onc

Re: Re: [sage-support] Generator of Finite Field

2012-06-03 Thread Oleksandr Kazymyrov
Hi, Yes, I hope that 2) will fix it. Cheers. Oleksandr -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-suppor

Re: Re: [sage-support] Generator of Finite Field

2012-06-03 Thread Martin Albrecht
Hi, K.gen() returns the thing we represent field elements in, but not necessarily the field generator. 1) However, the documentation is wrong: """ Return a generator of self. All elements x of self are expressed as log_{self.gen()}(p) internally """ This should be fixed and a reference to

Re: [sage-support] Generator of Finite Field

2012-06-03 Thread Oleksandr Kazymyrov
I have used log_repr() and expect that it return y of equation x^y = z. I also believed hat k.gen() return generator of the field. Now I must use following construction for solving my problem sage: R.=ZZ[] sage: k=GF(2^8,name='a',modulus=x^8+x^4+x^3+x+1) sage: a = k.multiplicative_generator() sa

Re: [sage-support] Generator of Finite Field

2012-05-29 Thread Alex Ghitza
Hi, On Mon, May 21, 2012 at 9:29 AM, Oleksandr Kazymyrov wrote: > I have encountered the following problem In Sage 5.0: > sage: R.=ZZ[] > sage: k=GF(2^8,name='a',modulus=x^8+x^4+x^3+x+1) > sage: k(ZZ(3).digits(2)) > a + 1 > sage: k.gen()^ZZ(k(ZZ(3).digits(2)).log_repr()) > a > sage:  k.gen()^ZZ(k

[sage-support] Generator of Finite Field

2012-05-20 Thread Oleksandr Kazymyrov
Hello all. I have encountered the following problem In Sage 5.0: sage: R.=ZZ[] sage: k=GF(2^8,name='a',modulus=x^8+x^4+x^3+x+1) sage: k(ZZ(3).digits(2)) a + 1 sage: k.gen()^ZZ(k(ZZ(3).digits(2)).log_repr()) a sage: k.gen()^ZZ(k(ZZ(3).digits(2)).log_repr()) == k(ZZ(3).digits(2)) False sage: *k("a