Hello all. I have encountered the following problem In Sage 5.0: sage: R.<x>=ZZ[] sage: k=GF(2^8,name='a',modulus=x^8+x^4+x^3+x+1) sage: k(ZZ(3).digits(2)) a + 1 sage: k.gen()^ZZ(k(ZZ(3).digits(2)).log_repr()) a sage: k.gen()^ZZ(k(ZZ(3).digits(2)).log_repr()) == k(ZZ(3).digits(2)) False sage: *k("a+1")*^ZZ(k(ZZ(3).digits(2)).log_repr()) == k(ZZ(3).digits(2)) True
It easy see that k.gen() or k.multiplicative_generator() is not a generator of the finite field: sage: k.multiplicative_generator() a^4 + a + 1 sage: k.gen() a sage: k.list() [0, a + 1, a^2 + 1, a^3 + a^2 + a + 1, a^4 + 1, a^5 + a^4 + a + 1, a^6 + a^4 + a^2 + 1, ... ] Generator is "a+1"! How to get generator of Finite Field? It was fine in Sage 4.8. Ubuntu 12.04 Linux hamsin 3.2.0-24-generic #37-Ubuntu SMP Wed Apr 25 08:43:52 UTC 2012 i686 i686 i386 GNU/Linux Best regards, Oleksandr -- To post to this group, send email to sage-support@googlegroups.com To unsubscribe from this group, send email to sage-support+unsubscr...@googlegroups.com For more options, visit this group at http://groups.google.com/group/sage-support URL: http://www.sagemath.org