Sure! I'll do it.
El jueves, 5 de abril de 2018, 12:15:30 (UTC-3), David Loeffler escribió:
>
> Sounds reasonable to me. Can you open a trac ticket for this?
>
> On 28 March 2018 at 18:01, Nicolás Sirolli > wrote:
>
>> The Gauss sum for the Dirichlet character modulo 1 is equal to 1, but:
>>
>> s
Sounds reasonable to me. Can you open a trac ticket for this?
On 28 March 2018 at 18:01, Nicolás Sirolli wrote:
> The Gauss sum for the Dirichlet character modulo 1 is equal to 1, but:
>
> sage: G = DirichletGroup(1)
> sage: chi = G.list()[0]
> sage: chi.gauss_sum()
> 0
>
> The output is zero be
The Gauss sum for the Dirichlet character modulo 1 is equal to 1, but:
sage: G = DirichletGroup(1)
sage: chi = G.list()[0]
sage: chi.gauss_sum()
0
The output is zero because the gauss_sum function in modular/dirichlet.py,
after some preliminaries, computes the following:
for c in chi.values()[1