Thank you Eric & Emmanuel for your solution proposals.

Regards,
  Bernd

Emmanuel Charpentier schrieb am Dienstag, 25. Februar 2025 um 18:08:15 
UTC+1:

> Complement : Sage’s notation for derivatives is somewhat baroque, and this 
> does not help in the present case.
>
> Here, both k and x are functions of t ; writing h as a function of x and k 
> is just an intricate way to write a function of t, unique independent 
> variable.
>
> As for notations : what we’d “manually” write in this case would be :
> [image: \displaystyle{\frac{\partial h}{\partial 
> t}}\,=\,\displaystyle{\frac{\partial h}{\partial x}\,\frac{\partial 
> x}{\partial t}}]
>
> and we could deduce
>
> [image: \displaystyle{\frac{\partial h}{\partial 
> x}}\,=\,\frac{\frac{\partial h}{\partial t}}{\frac{\partial x}{\partial t}}]
> .
>
> Sage doesn’t have a direct notation for denoting derivative with respect 
> to another function ; instead, it uses the Doperator, which creates 
> derivative operators :
> sage: t=var("t") sage: h, x=function("h, x") sage: diff(h(x(t)), t) 
> D[0](h)(x(t))*diff(x(t), t) sage: diff(h(x(t)), t)/diff(x(t), t) 
> D[0](h)(x(t)) 
>
> Eric’s notation is an elegant way to work around this problem.
>
> The use of standard notations leads to :
> sage: r, t, alpha, delta, r = var('r, t, alpha, delta, r') sage: k, x, 
> lambda_ = function("k, x, lambda_") sage: h(t) = k(t)*(1-x(t))*e^(-r*t) + 
> lambda_(t)*(k(t)^alpha*x(t)-delta*k(t)) sage: D[0](h)(x(t)) r*(x(x(t)) - 
> 1)*e^(-r*x(t))*k(x(t)) - (x(x(t)) - 1)*e^(-r*x(t))*D[0](k)(x(t)) - 
> e^(-r*x(t))*k(x(t))*D[0](x)(x(t)) + (alpha*k(x(t))^(alpha - 
> 1)*x(x(t))*D[0](k)(x(t)) - delta*D[0](k)(x(t)) + 
> k(x(t))^alpha*D[0](x)(x(t)))*lambda_(x(t)) - (delta*k(x(t)) - 
> k(x(t))^alpha*x(x(t)))*D[0](lambda_)(x(t)) 
>
> [image: \frac{\partial h(t)}{\partial x(t)}\,=\,r 
> {\left(x\left(x\left(t\right)\right) - 1\right)} e^{\left(-r 
> x\left(t\right)\right)} k\left(x\left(t\right)\right) - 
> {\left(x\left(x\left(t\right)\right) - 1\right)} e^{\left(-r 
> x\left(t\right)\right)} 
> \mathrm{D}_{0}\left(k\right)\left(x\left(t\right)\right) - e^{\left(-r 
> x\left(t\right)\right)} k\left(x\left(t\right)\right) 
> \mathrm{D}_{0}\left(x\right)\left(x\left(t\right)\right) + {\left(\alpha 
> k\left(x\left(t\right)\right)^{\alpha - 1} x\left(x\left(t\right)\right) 
> \mathrm{D}_{0}\left(k\right)\left(x\left(t\right)\right) - \delta 
> \mathrm{D}_{0}\left(k\right)\left(x\left(t\right)\right) + 
> k\left(x\left(t\right)\right)^{\alpha} 
> \mathrm{D}_{0}\left(x\right)\left(x\left(t\right)\right)\right)} 
> \lambda\left(x\left(t\right)\right) - {\left(\delta 
> k\left(x\left(t\right)\right) - k\left(x\left(t\right)\right)^{\alpha} 
> x\left(x\left(t\right)\right)\right)} 
> \mathrm{D}_{0}\left(\lambda\right)\left(x\left(t\right)\right).]
> sage: D[0](h)(k(t)) r*(x(k(t)) - 1)*e^(-r*k(t))*k(k(t)) - (x(k(t)) - 
> 1)*e^(-r*k(t))*D[0](k)(k(t)) - e^(-r*k(t))*k(k(t))*D[0](x)(k(t)) + 
> (alpha*k(k(t))^(alpha - 1)*x(k(t))*D[0](k)(k(t)) - delta*D[0](k)(k(t)) + 
> k(k(t))^alpha*D[0](x)(k(t)))*lambda_(k(t)) - (delta*k(k(t)) - 
> k(k(t))^alpha*x(k(t)))*D[0](lambda_)(k(t)) 
>
> [image: \frac{\partial h(t)}{\partial k(t)}\,=\,r 
> {\left(x\left(k\left(t\right)\right) - 1\right)} e^{\left(-r 
> k\left(t\right)\right)} k\left(k\left(t\right)\right) - 
> {\left(x\left(k\left(t\right)\right) - 1\right)} e^{\left(-r 
> k\left(t\right)\right)} 
> \mathrm{D}_{0}\left(k\right)\left(k\left(t\right)\right) - e^{\left(-r 
> k\left(t\right)\right)} k\left(k\left(t\right)\right) 
> \mathrm{D}_{0}\left(x\right)\left(k\left(t\right)\right) + {\left(\alpha 
> k\left(k\left(t\right)\right)^{\alpha - 1} x\left(k\left(t\right)\right) 
> \mathrm{D}_{0}\left(k\right)\left(k\left(t\right)\right) - \delta 
> \mathrm{D}_{0}\left(k\right)\left(k\left(t\right)\right) + 
> k\left(k\left(t\right)\right)^{\alpha} 
> \mathrm{D}_{0}\left(x\right)\left(k\left(t\right)\right)\right)} 
> \lambda\left(k\left(t\right)\right) - {\left(\delta 
> k\left(k\left(t\right)\right) - k\left(k\left(t\right)\right)^{\alpha} 
> x\left(k\left(t\right)\right)\right)} 
> \mathrm{D}_{0}\left(\lambda\right)\left(k\left(t\right)\right).]
>
> Not a pretty sight…
> ​
> Le mardi 25 février 2025 à 11:01:27 UTC+1, egourg...@gmail.com a écrit :
>
>> Hi, 
>>
>> Le lundi 24 février 2025 à 17:39:30 UTC+1, bernd.bre...@gmail.com a 
>> écrit :
>>
>> So how should i define  H in 'In [2]',  so that 'In [4]'  shows the 
>> expected result. 
>>
>>
>> Basically you should define H as a symbolic expression, not a function, 
>> and make a distinction between functions and symbolic variables. 
>> A solution is 
>>
>> t = var('t')
>> r = var('r')
>> delta = var('delta')
>> alpha = var('alpha')
>>
>> x = function('x')
>> k = function('k')
>> lambda_ = function('lambda_') 
>>
>> X = var('X')
>> K = var('K')
>> L = var('L')
>> H = K*(1 - X)*exp(-r*t) + L*(K^alpha*X - delta*K)
>>
>> to_functions = {X: x(t), K: k(t), L: lambda_(t)}  # a dictionary to 
>> perform substitutions
>>
>> eq1 = (diff(H, X).subs(to_functions) == 0)
>> eq2 = (diff(H, K).subs(to_functions) == - diff(lambda_(t), t))
>>
>> Best wishes,
>>
>> Eric. . 
>>
>

-- 
You received this message because you are subscribed to the Google Groups 
"sage-support" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to sage-support+unsubscr...@googlegroups.com.
To view this discussion visit 
https://groups.google.com/d/msgid/sage-support/0c186ea2-15ac-41bb-bc3f-8e26ecddcd9en%40googlegroups.com.

Reply via email to