Complement : Sage’s notation for derivatives is somewhat baroque, and this does not help in the present case.
Here, both k and x are functions of t ; writing h as a function of x and k is just an intricate way to write a function of t, unique independent variable. As for notations : what we’d “manually” write in this case would be : [image: \displaystyle{\frac{\partial h}{\partial t}}\,=\,\displaystyle{\frac{\partial h}{\partial x}\,\frac{\partial x}{\partial t}}] and we could deduce [image: \displaystyle{\frac{\partial h}{\partial x}}\,=\,\frac{\frac{\partial h}{\partial t}}{\frac{\partial x}{\partial t}}] . Sage doesn’t have a direct notation for denoting derivative with respect to another function ; instead, it uses the Doperator, which creates derivative operators : sage: t=var("t") sage: h, x=function("h, x") sage: diff(h(x(t)), t) D[0](h)(x(t))*diff(x(t), t) sage: diff(h(x(t)), t)/diff(x(t), t) D[0](h)(x(t)) Eric’s notation is an elegant way to work around this problem. The use of standard notations leads to : sage: r, t, alpha, delta, r = var('r, t, alpha, delta, r') sage: k, x, lambda_ = function("k, x, lambda_") sage: h(t) = k(t)*(1-x(t))*e^(-r*t) + lambda_(t)*(k(t)^alpha*x(t)-delta*k(t)) sage: D[0](h)(x(t)) r*(x(x(t)) - 1)*e^(-r*x(t))*k(x(t)) - (x(x(t)) - 1)*e^(-r*x(t))*D[0](k)(x(t)) - e^(-r*x(t))*k(x(t))*D[0](x)(x(t)) + (alpha*k(x(t))^(alpha - 1)*x(x(t))*D[0](k)(x(t)) - delta*D[0](k)(x(t)) + k(x(t))^alpha*D[0](x)(x(t)))*lambda_(x(t)) - (delta*k(x(t)) - k(x(t))^alpha*x(x(t)))*D[0](lambda_)(x(t)) [image: \frac{\partial h(t)}{\partial x(t)}\,=\,r {\left(x\left(x\left(t\right)\right) - 1\right)} e^{\left(-r x\left(t\right)\right)} k\left(x\left(t\right)\right) - {\left(x\left(x\left(t\right)\right) - 1\right)} e^{\left(-r x\left(t\right)\right)} \mathrm{D}_{0}\left(k\right)\left(x\left(t\right)\right) - e^{\left(-r x\left(t\right)\right)} k\left(x\left(t\right)\right) \mathrm{D}_{0}\left(x\right)\left(x\left(t\right)\right) + {\left(\alpha k\left(x\left(t\right)\right)^{\alpha - 1} x\left(x\left(t\right)\right) \mathrm{D}_{0}\left(k\right)\left(x\left(t\right)\right) - \delta \mathrm{D}_{0}\left(k\right)\left(x\left(t\right)\right) + k\left(x\left(t\right)\right)^{\alpha} \mathrm{D}_{0}\left(x\right)\left(x\left(t\right)\right)\right)} \lambda\left(x\left(t\right)\right) - {\left(\delta k\left(x\left(t\right)\right) - k\left(x\left(t\right)\right)^{\alpha} x\left(x\left(t\right)\right)\right)} \mathrm{D}_{0}\left(\lambda\right)\left(x\left(t\right)\right).] sage: D[0](h)(k(t)) r*(x(k(t)) - 1)*e^(-r*k(t))*k(k(t)) - (x(k(t)) - 1)*e^(-r*k(t))*D[0](k)(k(t)) - e^(-r*k(t))*k(k(t))*D[0](x)(k(t)) + (alpha*k(k(t))^(alpha - 1)*x(k(t))*D[0](k)(k(t)) - delta*D[0](k)(k(t)) + k(k(t))^alpha*D[0](x)(k(t)))*lambda_(k(t)) - (delta*k(k(t)) - k(k(t))^alpha*x(k(t)))*D[0](lambda_)(k(t)) [image: \frac{\partial h(t)}{\partial k(t)}\,=\,r {\left(x\left(k\left(t\right)\right) - 1\right)} e^{\left(-r k\left(t\right)\right)} k\left(k\left(t\right)\right) - {\left(x\left(k\left(t\right)\right) - 1\right)} e^{\left(-r k\left(t\right)\right)} \mathrm{D}_{0}\left(k\right)\left(k\left(t\right)\right) - e^{\left(-r k\left(t\right)\right)} k\left(k\left(t\right)\right) \mathrm{D}_{0}\left(x\right)\left(k\left(t\right)\right) + {\left(\alpha k\left(k\left(t\right)\right)^{\alpha - 1} x\left(k\left(t\right)\right) \mathrm{D}_{0}\left(k\right)\left(k\left(t\right)\right) - \delta \mathrm{D}_{0}\left(k\right)\left(k\left(t\right)\right) + k\left(k\left(t\right)\right)^{\alpha} \mathrm{D}_{0}\left(x\right)\left(k\left(t\right)\right)\right)} \lambda\left(k\left(t\right)\right) - {\left(\delta k\left(k\left(t\right)\right) - k\left(k\left(t\right)\right)^{\alpha} x\left(k\left(t\right)\right)\right)} \mathrm{D}_{0}\left(\lambda\right)\left(k\left(t\right)\right).] Not a pretty sight… Le mardi 25 février 2025 à 11:01:27 UTC+1, egourg...@gmail.com a écrit : > Hi, > > Le lundi 24 février 2025 à 17:39:30 UTC+1, bernd.bre...@gmail.com a > écrit : > > So how should i define H in 'In [2]', so that 'In [4]' shows the > expected result. > > > Basically you should define H as a symbolic expression, not a function, > and make a distinction between functions and symbolic variables. > A solution is > > t = var('t') > r = var('r') > delta = var('delta') > alpha = var('alpha') > > x = function('x') > k = function('k') > lambda_ = function('lambda_') > > X = var('X') > K = var('K') > L = var('L') > H = K*(1 - X)*exp(-r*t) + L*(K^alpha*X - delta*K) > > to_functions = {X: x(t), K: k(t), L: lambda_(t)} # a dictionary to > perform substitutions > > eq1 = (diff(H, X).subs(to_functions) == 0) > eq2 = (diff(H, K).subs(to_functions) == - diff(lambda_(t), t)) > > Best wishes, > > Eric. . > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion visit https://groups.google.com/d/msgid/sage-support/55dbc03c-879d-4f53-92d6-b0ebd3fc4ac0n%40googlegroups.com.