Well, it’s a bit more intricate than I thought initially : sage: reset() sage: k = var("k") sage: Ex = (1 + (-1)^k)*x^k sage: sum(Ex, k, 0, oo) sum(((-1)^k + 1)*x^k, k, 0, +Infinity)
Sage (i. e. Maxima) can’t solve it. sage: sum(Ex, k, 0, oo, algorithm="giac") 1/(x + 1) - 1/(x - 1) Giac does sage: sum(Ex, k, 0, oo)._sympy_().doit() Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True)) + Piecewise((1/(x + 1), Abs(x) < 1), (Sum((-1)**k*x**k, (k, 0, oo)), True)) Sympy does, gives an important precision (radius of convergence), but this answer can’t (yet) be (automatically) translated to Sage sage: Ex._mathematica_().Sum(mathematica([k, 0, oo])) {(1 + (-1)^k)*k*x^k, 0, (1 + (-1)^k)*x^k*Infinity} Applying the Sum (Mathematica) method to the Ex object (automatically translated to Mathematica) gives a nonsensical answer sage: mathematica.Sum(*map(mathematica, (Ex, [k, 0, oo]))) {(1 + (-1)^k)*k*x^k, 0, (1 + (-1)^k)*x^k*Infinity} Ditto when calling the mathematica.Sum function to the (manually translated) arguments. sage: mathematica("Sum[%s, %s]"%tuple(map(lambda u:repr(mathematica(u)), (Ex, [k, 0, oo])))) -2/(-1 + x^2) But passing to the interpreter a (manually built) string representting the function call works. Not obvious to report… Le dimanche 9 juillet 2023 à 23:45:59 UTC+2, Jan Groenewald a écrit : > Debian 12, Sage 9.5 (debian package), Mathematica 13.3 > > sage: mathematica("Sum[%s, %s]"%tuple(map(lambda u:repr(mathematica(u)), > ((1+(-1 > ....: )^k)*x^k, [k , 0, oo])))) > -2/(-1 + x^2) > > sage: mathematica.Sum(*map(mathematica, ((1+(-1)^k)*x^k, [k , 0, oo]))) > {(1 + (-1)^k)*k*x^k, 0, (1 + (-1)^k)*x^k*Infinity} > > On Sun, 9 Jul 2023 at 23:01, Emmanuel Charpentier <emanuel.c...@gmail.com> > wrote: > >> Inspiration : this ask.sagemath.org question >> <https://ask.sagemath.org/question/69855/compute-power-series/>. >> >> Using the Wolfram engine <https://www.wolfram.com/engine/> gives me a >> curious and nonsensical conversion. Compare : >> sage: mathematica("Sum[%s, %s]"%tuple(map(lambda u:repr(mathematica(u)), >> ((1+(-1)^k)*x^k, [k , 0, oo])))) -2/(-1 + x^2) # Correct sage: >> mathematica.Sum(*map(mathematica, ((1+(-1)^k)*x^k, [k , 0, oo]))) {(1 + >> (-1)^k)*k*x^k, 0, (1 + (-1)^k)*x^k*Infinity} # Nonsensical >> >> I *think* that this signs a bug in the Mathematica conversion of sum. >> Can someone check me with the “full blown” Mathematica interpreter before I >> open an new issue ? >> >> Thanks in advance… >> >> >> -- >> You received this message because you are subscribed to the Google Groups >> "sage-support" group. >> To unsubscribe from this group and stop receiving emails from it, send an >> email to sage-support...@googlegroups.com. >> To view this discussion on the web visit >> https://groups.google.com/d/msgid/sage-support/03eb02e5-6872-4479-8f30-ee2e92606b2an%40googlegroups.com >> >> <https://groups.google.com/d/msgid/sage-support/03eb02e5-6872-4479-8f30-ee2e92606b2an%40googlegroups.com?utm_medium=email&utm_source=footer> >> . >> > -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/49ae8276-f134-4b7d-9fee-8d600cdbe816n%40googlegroups.com.