Thanks Emmanuel for your so precious answer. But obviously the doc must be upgraded. From "maxima", "fricas", "sympy", "giac"only "sympy" has a reference. I wonder If one could add a parameter asking, in all cases, only for Real solutions.
----- Mail d’origine ----- De: Emmanuel Charpentier <emanuel.charpent...@gmail.com> À: sage-support <sage-support@googlegroups.com> Envoyé: Tue, 30 Nov 2021 14:54:31 +0100 (CET) Objet: Re: [sage-support] Re: Constrained optimization with strange result. Le lundi 29 novembre 2021 à 16:33:41 UTC+1, cyrille piatecki a écrit : Thanks Emmanuel for your precious answer. But It generates some few new questions : - is there a place in the documentation where I can find the information on `solve()` and mainly its options ? The documentation, of course… - if I understand clearly z_{6497} is an integer but how to fix it to zero --- when the number change at each iteration That’s why I used a methods sequence to designate it, rather than using its name… - sympy seems to be the good approach Beware : see below… but it is not self evident that to call y one must typpeset sol2[0][x] It is, because algorithm="sympy" will cause the results to be expressed as dictionaries and D[x] is the canonical way to get the value of the entry of dictionary D indexed by x. Basic Python… - the giac way is certainly the better but it keeps no track of the variable's order. Again, ask for a solution dictionary. As for algorithm="giac", I have seen it go pear-shaped a couple times…Now for the various expression of solutions : consider :print(table([[u,solve(FOC,[x,y,l], solution_dict=True, algorithm=u)] for u in ["maxima", "fricas", "sympy", "giac"]])) maxima [{l: 1/p_y, x: (p_x/p_y)^(1/a)*e^(2*I*pi*z3541/a), y: -(p_x*(p_x/p_y)^(1/a)*e^(2*I*pi*z3541/a) - R)/p_y}] fricas [{l: 1/p_y, x: (p_x/p_y)^(1/a)*e^(2*I*pi*z3892/a), y: -(p_x*(p_x/p_y)^(1/a)*e^(2*I*pi*z3892/a) - R)/p_y}] sympy [{x: (p_x/p_y)^(1/a), l: 1/p_y, y: -(p_x*(p_x/p_y)^(1/a) - R)/p_y}] giac [{x: (p_x/p_y)^(1/a), y: -(p_x*(p_x/p_y)^(1/a) - R)/p_y, l: 1/p_y}] Both maxima and fricas try to explicitly express the set of solutions of the equation z^a==p_x/p_y, which is a set of a complexes if a is a positive integer. (I leave to you (as en exercise ;-) to determine what it means (if any…) if a is rational, algebraic or transcendental, real or complex…).OTOH, both sympy and giac use the notation (p_x/p_y)^(1/a) to implicitly denote *the very same set of solutions to the very same equation. One could say that tey are glossing over whatever maxima and fricas insist on. Choose your poison…HTH, I have tried my solution assuming l>0 on the 3 conditions but it changes nothing. ----- Mail d’origine ----- De: Emmanuel Charpentier <emanuel.c...@gmail.com> À: sage-support <sage-s...@googlegroups.com> Envoyé: Mon, 29 Nov 2021 11:03:37 +0100 (CET) Objet: [sage-support] Re: Constrained optimization with strange result. Variables of the form z_xxxx are integer variables created by Maxima, which attempts to give you also the complex roots, if any, thus ignoring the assumptions on x, y and l. Note that :sage: solve(FOC[0], x) --------------------------------------------------------------------------- [ Snip… ]TypeError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(l>0)', see `assume?` for more details) Is l positive, negative or zero? sage: with assuming(l>0): print(solve(FOC[0], x)) [ x == (l*p_x)^(1/a) ] sage: with assuming(l<0): print(solve(FOC[0], x)) [ x^a == l*p_x ] sage: with assuming(l<0): print(solve(FOC[0], x, to_poly_solve=True)) [x == (l*p_x)^(1/a)*e^(2*I*pi*z4353/a)] Interestingly:sage: solve([FOC[0]==0,FOC[1]==0,FOC[2]==0],x,y,l) [[l == (1/p_y), x == (p_x/p_y)^(1/a)*e^(2*I*pi*z3540/a), y == -(p_x*(p_x/p_y)^(1/a)*e^(2*I*pi*z3540/a) - R)/p_y]] sage: solve([FOC[0]==0,FOC[1]==0,FOC[2]==0],x,y,l, algorithm="sympy") [{x: (p_x/p_y)^(1/a), l: 1/p_y, y: -(p_x*(p_x/p_y)^(1/a) - R)/p_y}] sage: solve([FOC[0]==0,FOC[1]==0,FOC[2]==0],x,y,l, algorithm="fricas") [[l == (1/p_y), x == (p_x/p_y)^(1/a)*e^(2*I*pi*z3891/a), y == -(p_x*(p_x/p_y)^(1/a)*e^(2*I*pi*z3891/a) - R)/p_y]] sage: giac.solve(giac(FOC),giac([x,y,l])).sage() [[(p_x/p_y)^(1/a), -(p_x*(p_x/p_y)^(1/a) - R)/p_y, 1/p_y]] HTH,Le dimanche 28 novembre 2021 à 22:13:12 UTC+1, cyrille piatecki a écrit : On my computer the solution of var('a x y p_x p_y D Rev R l') assume(a,'real') assume(x,'real') assume(y,'real') assume(p_x,'real') assume(p_y,'real') assume(D,'real') assume(Rev,'real') assume(R,'real') assume(l,'real') assume(a<1) assume(a>0) assume(p_x>0) assume(p_y>0) assume(R>0) U =(1/(a+1))*x^(a+1)+y show(LatexExpr(r'\text{La fonction d}^\prime\text{utilité est }U(x,y) = '),U) D= x*p_x + y*p_y show(LatexExpr(r'\text{La Dépense } D = '),D) Rev= R show(LatexExpr(r'\text{Le Revenu } Rev = '),R) L=U+l*(Rev-D) show(LatexExpr(r'\text{Le lagrangien est } \mathcal{L}(x, y, λ) = '),L) FOC = [diff(L,x),diff(L,y),diff(L,l)] show(LatexExpr(r'\text{Les condition du premier ordre sont } \left\{\begin{array}{c}\mathcal{L}_x= 0\\\mathcal{L}_y= 0\\\mathcal{L}_λ= 0\end{array}\right. ')) show(LatexExpr(r'\text{soit }')) show(LatexExpr(r'\mathcal{L}_x= 0 \Longleftrightarrow '),FOC[0]==0) show(LatexExpr(r'\mathcal{L}_y= 0 \Longleftrightarrow '),FOC[1]==0) show(LatexExpr(r'\mathcal{L}_λ= 0 \Longleftrightarrow '),FOC[2]==0) sol=solve([FOC[0]==0,FOC[1]==0,FOC[2]==0],x,y,l) show(sol) Is nearly correct, but an extra complex exponential term multiplies $x$ and then modifies $y$. Even as an element I do not understand its form : $e^{(2iπz_{5797}a)}$ Could some one explain why ? -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/e745f8a7-df76-4def-b3b9-09ac7684e9a3n%40googlegroups.com. -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/04561da4-79da-43de-b55c-7b1f65a48984n%40googlegroups.com. -- You received this message because you are subscribed to the Google Groups "sage-support" group. To unsubscribe from this group and stop receiving emails from it, send an email to sage-support+unsubscr...@googlegroups.com. To view this discussion on the web visit https://groups.google.com/d/msgid/sage-support/1449379039.6084523.1638292709386.JavaMail.zimbra%40univ-orleans.fr.